A simple calculation of the rate of emission of energy and of linear
and angular momentum by a point charge in arbitrary motion
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We calculate directly the rates of emission of energy and linear momentum by a point charge in
arbitrary motion using mathematical results that render the calculation of solid-angle integrals very
simple. We show that the results of these explicit calculations agree with those based on covariance,
illustrating how deeply special relativity is rooted in classical electrodynamics. Then, we use these
covariance arguments to calculate the emission of angular momentum, which is a new result. We
also indicate how this calculation can be done in the direct, but much longer, way99gcamerican
Association of Physics Teachers.

[. INTRODUCTION the direct, but much longer, method of Sec. Ill. Finally, in

. . Sec. VII we conclude by summarizing the results of this
We have found that emission of linear and angular moy,q y g

mentum by a multipolar charge distribution has received '

careful attention in the literatuf&1?233@ Although there

are very well-presented calculations of energy emission by

an arbitrarily moving point charge;® the specialized text- |I. THE RATE OF ENERGY EMISSION BY A POINT

books do not present any material on the emission of angulatHARGE IN ARBITRARY MOTION

momentum by the moving charge. The purpose of this article

is twofold. First, it is meant to supplement classical electro- As explained in an exemplary way by Panofsky and

magnetism textbooks by presenting a very simple calculatiohillips*® the rate of energy emitted by a charged particle at

of the emission of energy and of linear momentum by amositionx(t') is given, in Gaussian units, by

arbitrarily moving point charge, in a noncovariant formalism.

The second aim of this paper is to present the calculation of d_VV_ 3€ ﬂ CEXB

the emission of angular momentum by the charge, whichisa dt’ =~ Js|dt’ 47

new result. )
We do the calculation of the emission of energy and of(the loss would be—dW/dt’), where c(EXB)/(4m) is

linear momentum by an arbitrarily moving point charge Poynting’s vector,E and B are the electric and magnetic

without relying on cumbersome brute-force computations, ofields, respectivelySis an arbitrary closed surface contain-

on relativistic arguments that could seem too obscure for aing the point chargen(|n|=1) is the external normal to the

undergraduate student not accustomed to the intricacies sfirfaceS, tis the time at the observation poirton S, the

the covariant formulation of electrodynamics. The methodparticle’s own timet’ is related tot by t'=t—r/c, andr

we adopt is not difficult to understand and dramatically sim-=|x—x.(t")|. Since the energy emitted by the particle even-

plifies the calculations, so that any student can obtain generalally reaches infinity, we choos®to be a spherical surface

results without going through many hours of tedious work.of very large radiug, centered at the position the particle

Afterwards, we sketch the covariance arguments leading tgccupied at its own time¢’, retarded with respect to The

the same result for the linear momentum emission rate. Thegyantitydt/dt’ is easily calculated to be

we reverse the procedure and calculate the angular momen-

tum emission by using the experience gained through the dt

covariance reasoning. We also indicate how the same result g¢’ — 1=n-p, @

can be calculated in the direct way. _ ) _
This work has pedagogical purposes and, accordingly, i¥here B=v/c and v=v(t’) is the velocity of the point

organized as follows. In Sec. Il we review the concept ofcharge at time’. Let us notice that our choice of the surface

emission of energy by an arbitrarily moving point charge.Simpliesn=r/r, wherer is the vector from the position of

We employ Poynting’s vector and the electric and magnetighe charge at tim¢’ to the point on the surfacBwheren is

fields in the radiation region to write down the rate of energypeing calculatedr =x—x.(t’)].

emission in terms of solid-angle integrals. These integrals are on|y the terms of first order in~* are necessary for the

solved in Sec. lll, using simplifying mathematical results. fig|qs in Eq. (1), because Poynting’s vector is quadratic in

Section IV reviews the formulation of the rate of linear mo- o fie|gs andiSis proportional tar2. Anyway, we will write

mentum emission by an arbitrarily moving point charge anc{he full expression of the electric fief because we will

shows how this quantity can be easily obtained using th‘f’leed it in Sec. VI for the calculation of the angular momen-

) -ndS (1)

results of Sec. lll. In Sec. V we sketch the covariance arguz fecinn-
. . . . um emission:
ments to obtain the linear momentum emission from its value
at small velocities. A succinct version of this topic can be e(1-B%)(n—B) enx[(n—pB)Xxa]
found in Ref. 3b). In Sec. VI we calculate the emission of = T Z1-n p) Z1=n p7° (33
angular momentum by using covariance arguments, and we
also indicate how the same result can be obtained through B=nXE, (3b)
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wherea=a(t’) is the acceleration of the point charge attime A second reasoning for the straightforward calculation of
t’. In the radiation zone, only the second term on the rightthese integrals is as follows. Consider figtin Eq. (6b).
hand side of Eq(3a) contributes. It follows from Eq(3) Being a vector that depends only ghits general form must
that, in this regionE-n=0 and EXB)-n=|E|?. Then, to- be J,=f(8%)B;, where we can already guess tfatill de-
gether with Eq.(2) and the relationdS=r2dQ, Eq. (1) pend only onB?. To obtainf we just contract Eq(6b) with

become&® B to reduce the integral to an elementary one. We get with
— — _n-1
dW_ e? {nx[(n—ﬂ)xa]}zdﬂ . x=pBcoshanddQ)=— B~ ~dx de,
@ ane) a9 @ 2w e xax

— | ——a=1B%
4
As indicated in Ref. 4, the calculation of the integral through B J-p(1=x)

the analysis of the nodal lines is somewhat complicated. Ahter calculating this simple integral we immediately get Eq.
this point we emphasize that there are two simple ancz

straightforward ways to perform the angular integration One7a)' Next, becausk;; in Eq. (6¢) is a symmetric tensor that
of them is based on the simple fact that, when we expand thgepends only ong, its general form must b&;;=ady
+bpB;iB;, where, again, the coefficients depend onlyAm

numerator, the integrals containing componenisof the Contracting firsi andi and th i q q
normal vector can be written as derivatives with respeg; to ontracting firsé andj and then with3; and 3, , we end up

of a single elementary) integral. The other is based on with two elementary integrals to determine the coefficients.
vector-algebra arguments to get the general form of thes}—{\ve get

integrals. These simple procedures are carried outin detailin 27 8  dx )

— ——==3a+bp°,
Sec. Il B | _s1—%7 B

27 (B x2dx 5 . (8)
lll. THE CALCULATION OF THE SOLID-ANGLE B 73(1_—)()5=aﬁ +bp".

INTEGRALS
_ _ After solving these simple integrals we get E@b). From
There are probably many different ways to calculate solid£gs. (5) to (7), we finally obtain the energy emission of a

angle integrals involving components of the unit vector nor-moving point charge and the result can be expresséd as
mal to the spherical surface, multiplied by some power of

2 2 2
(1—n-B)~L. In particular, KonopinsRi® suggested in prob- dw_ 2e"|a"—(ax p) 9)
lems that Eq(4) can be manipulated algebraically to be writ-~~ dt’  3c¢®| (1-8%)°% |

ten as a linear combination of integrals of{h- 8) 3, with
s=3,4,5, which can be easily integrated. Here we present
different and somewhat easier method, by means of whic
only one integral needs to be performed: the integral of (1
—n-B)3.
Expanding the numerator of the integrand in E4). al-
lows us to write
47c® dW - - - L i
=&+ 2(a-Bad— (1- pAaaK; (5) In this section we illustrate how equally easy it is to cal
e’ dt’ ! AR culate the linear momentum emission rate by a point charge
where henceforth we assume that repeated Roman indicds 3" arbitrary motion. By the method of Secz. H_Ié only ofte
are summed from 1 to 3 and integral has to be performed, the one of{(B°) <. Analo-
gously to the case of energy emission, we can express the

This is the instantaneous rate of radiation evaluated at the
article’s timet’.

IV. THE LINEAR MOMENTUM EMISSION BY A
POINT CHARGE IN ARBITRARY MOTION

I=J do 4w 63 rate of momentum emission by the charg&®s
(1-n-p° (1-pH% dP, dt
| ndQ 1 4l ) av 3€S qv | Tim ds (10
i~ 1=n-B* 398°
(I=n-B)" 3B (the loss would be-dP;/dt’, which is equal to the force
nin;dQ 1 3 reacting on the systeywhereP; is theith component of the
Kij= (1-n.p° 12 BB’ (69 momentum being emitted and;; is Maxwell's stress

wherel is the only integral we had to calculate. Its value

comes from choosing the axis alongB and writingn- 8
=B cosé and dQ = —d(cosé)de. Next, by usingd8?/dp;
=26; we immediately get, from Eq6),

3= 167, 7
R RN 7a
68 3
Kij = 3(1- 377 (7b)
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tensor*@

1 1,
T EiEj+BiB— 5 (E*+B%)5; .

s

(11)

It follows from Eg. (3) that, in the radiation regiork-n
=B-n=0 and, sinceE L B, thenE?=B2. Hence, Eq(11)
gives

1 2
Tijnj:__E n;.

4
Using Egs.(2), (3a), and(12), we can write Eq(10) as

(12
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4arct dP;

a’Ai+2(a- B)aB;;— (1— B2 ajaylij .

e’ dt’
(13
where, with the indication
B dQ B 4
M‘f(l—n-mz‘(l—ﬁzw
we have
ndQ 1M 4xB,
AT TenpE T 2om sa-pz 0 49
4BiB;
g [ _mnde 1 M _477 5”+1—,8])
") A-npt 6agiag 3(1-pH7
(14b
nin;ndQ)
H ) T
1 M
248,8iz9,8jz9,8k
477( 5ij/3k+5ik,3j+5jkﬂi+65+ﬁi]8%
= (1409

3(1-8%)°
The quantitiesh; andB;; are obtained in a way analogous to
the calculation leading to Eq7). Another way of getting the
result for Ljj is to notice that Eq(140 is a completely
symmetric third-order tensdchanges sign under inversion
depending only ong. Therefore, its general form ik
:A( 5ijBk+ 5ikﬂj + 5”(,8,) + BB|BJB|( s Containing Only odd
powers ofg; . Contraction withs;; 8 and with 8; 8; 8 leads
again to elementary integrals for the determinatioatnd
B, and the final result is again E(L40).

Finally, from Egs.(13) and(14), it readily follows that

dP  2e*[a’—(ax B)?
dt’ 3c?| (1-p?)3
This result was first obtained by Abrahary a different,

(15

f nin; dQ:(4’7T/3)5” ,

f ninjnkm dQ= (477/15)(5” 5k| + 5”(5“ + 5“ 5jk)!

which actually inspired the second method to obtain &he
integrals in Sec. lll, and notice that the integral over an odd
number of normal components is equal to zero.
Equation(16) holds in a reference frame where the mag-
nitude of the velocity of the particle is much less than the
speed of light. Now it is straightforward to obtain a covariant
expression whose purely spatial components reduce to Eq.
(16) in the limit of low speed:
dpr  2e?
dr 3c?
where henceforth we assume that repeated Greek indices are
summed from O to 3¢#*=du*/dr is the four-acceleration,
ut=dx*/dr is the four-velocity,r is the proper timex°
=ct’, xl=x,(t'), x®=y(t"), x3=z,(t"), xo=ct’, X;
=—X(t"), Xo=—y(t"), andxz= —z.(t"). Therefore,
a’—(ax B)?
(1-p)°
As this result reduces te-a? and rto t’ when8=0, andu;
reduces taB; to first order inB, the space part of Eq17)
reduces to Eq(16) and, therefore, this covariant expression
should be the desired result. Equatitt¥) is valid in any
other frame, that is, for arbitrary velocities. In termsgénd
a, the space part of Eq17) becomes Eq(15) if we consider

Eqg. (18). This is the method we shall use in Sec. VI to
calculate the emission of angular momentum.

(17

v
a’a ut,

ata,=— (18

VI. EMISSION OF ANGULAR MOMENTUM BY AN
ARBITRARILY MOVING POINT CHARGE

In this section we calculate the emission of angular mo-
mentum for the arbitrary motion of the particle, which is a
new result, by using covariance arguments. For this purpose,

and rather involved, method. We stress that this expression {§e calculate the emission for low velocities. Thence we

the instantaneous rate of momentum emission evaluated
the particle’s timet’.

V. COVARIANCE ARGUMENTS

Bbost the answer to arbitrary velocities by using the experi-
ence gained in Sec. V. Again, on pedagogical grounds, we
indicate afterwards how the calculation could be performed
by the direct method of Sec. lll.

The emission of angular momentum is giverf By

In this section we analyze the previous result in the light

of covariance arguments of special relativity, obtaining the
rate of linear momentum emission from its value at small

velocities. Essentially, here we present an expanded variation

of the succinct discussion by Konopin&Ri and, following

this section, we employ the same covariance reasoning to

calculate the emission of angular momentum.
After a rather simple calculation we obtain tith compo-

nent of the rate of momentum emission at small velocities:

2e? )
—@aﬁi,

ap 16
av 19
where the index 1 means that this value is of first ordes.in
To get this result we just expand £in- 8) °~1+5n-Bin

the integrand of Eq(10), use the known resu

1
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dLi_§ dt)
av ~ Pelar/mMidS
where

Mji :eimnijXni

Tim is given by Eq.(11), anddt/dt’ is given by Eq.(2).
Therefore, taking into account that B=0, from Eg. (3b),
we get
dL
dt’

1

4m

(19

dt
—)(nE)(Exn)r?’dQ.

s\ dt’

For the calculation to first order iB, the electric field of
Eqg. (3a) becomes
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_e(n—p enX[(n—B)Xa] dL  2e* Bxa
Tr1-n-pge Trck1-np)° (20 at 32 (1-p9)’

We could expand the denominators, but it is more convewhich is the new result. It is the instantaneous rate of emis-

nient to do so after multiplication bglt/dt’, given by Egq. sion of angular momentum at the particle’s tirrie In the

(2). When calculatingi- E, only the first,r ~2, term does not  case of a charge in a central-force motion, this result reduces

vanish. On the other hand, when calculatmg E, only the  to Eg. (16.16 of Ref. 2 if we take the limit of small veloci-

seconds_*, term contribuites to the integral, because of thetie?tgz'? feo? E:m%?g?éfwaésin?/vg?%]dicate how the calculation can
3 ; : ; ,

factorr® in Eq. (19). A straightforward calculation gives be done by the direct method of Sec. Ill. From E@) and

E

(24)

dL e? 19), it follows that we should calculate the solid-angle inte-
= 3§S[3(n><a)(n-ﬂ)+(n></;)(n-a)]d9, éraﬂ g
which can also be expressed in terms of Cartesian compo- 9L _ e*(1-p7) j (n-a)(nx B) n nxa 40
nents as dt’ 47rc? (1-n-p*  (1-n-p3 "
dLi 62 (25)
av - m[?>fij|<<’ikﬁlJr €ijk Byl jgsnjm dQ If we write Eq.(25) in terms of its components, we see that
substituting the integrald; andB;; of Eqs.(148 and(14b
2e? into (25) gives, after some algebraic operations, the result of
= 32 SiikBjak. (21)  Eq.(24).

where we have used E¢rb) with B=0. To make the gen-
eralization to the covariant form of EJ), it is convenient  VII. CONCLUSION

to eliminate theej, tensor by defining the quantity In this paper we have shown two straightforward methods

dAmn dL; 2e? to calculate the solid-angle integrals for both the energy and
¢~ €mnigp = 363 (Vm@n~ Vnlm)- (22) linear momentum emission rates by a charged point particle.
dt dt" 3c y ged p p
o ) ] ) ~ Because the emission rate of linear momentum is an impor-
Now it is straightforward to obtain a covariant expressiontant feature of accelerated charges, we believe that this work
whose purely spatial components reduce to @) in the  really supplements the existing material in classical text-
limit of low speed: books. We have also shown how covariance arguments can
dA#Y 22 further reduce the calculation.
—— =53 (U*a”"—u"a"), (23 In a second stage we have calculated the emission of an-
dr 3¢ gular momentum by the moving point charge, which consti-
where the four-velocity* and four-acceleration” are de- tutes a new result. This we have done reversing the proce-
fined in Sec. V. In terms of and ofd@/dt’, the space part dure, thatis, using the covariance arguments. We have also
of Eqg. (23) becomes indicated how it could be obtained through the direct, al-
though rather long, process of calculation.

dA” 262 d,BJ dﬁ|
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IMMORTALITY

So Greek mathematics is ‘permanent’, more permanent even than Greek literature. Archimedes
will be remembered when Aeschylus is forgotten, because languages die and mathematical ideas
do not. “Immortality’ may be a silly word, but probably a mathematician has the best chance of
whatever it may mean.

G. H. Hardy,A Mathematician's ApologyCambridge University Press, 1969; reprint of 1940 edjtign 81.
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