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Abstract 

A closed form of the electrostatic potential of a homogeneously charged cube is derived by 
integration. The exact result is compared with multipole expansions for the exterior and interior 
of the cube. The electrostatic potential of a homogeneously charged square in two-dimensional 
electrostatics is also determined. 
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1. Introduction 

The electrostatic potential o f  a homogeneously charged cube appears in theoreti- 
cal studies o f  Wigner lattices [1]. In computer simulations of  ionic systems using 
minimum-image electrostatics, it determines the electrostatic self-interaction o f  ions 
[2-6]. Hummer et al. [5] presented a simple calculation o f  the electrostatic potential 
at the center o f  a homogeneously charged cube. In this work, a closed form of  the 
electrostatic potential will be determined for arbitrary positions. This analytic form can 
be used for the evaluation o f  lattice sums. It can also be applied as a correction when 
electrostatic potentials are calculated on a grid, assuming that the grid volumes are 
uniformly charged rather than carrying a point charge at the center. The analytic form 
of  the potential will be compared with multipole expansions [1, 7]. 
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2. Calculation of the electrostatic potential of  a cube 

The electrostatic potential ~bc of a cube [-½,113 with charge density one will be 
calculated by integration. The potential at a point with Cartesian coordinates (u, v, w) 
can be written as 

1 " 1 / ' 2 1 1 / 2 1 1 / 2  
~)c(U'I)'w)~- J-I/2dx,l-l/2dY,l-l/2dz C(X--U)2 +(y--U)2 +(Z--W)2] -l/2 , ( 1 )  

where Gaussian units are used. ~bc can be rewritten as 

[ I / 2 - - u [ I / 2 - - v [ l , / 2 - w  
dx d j  dg (X 2 + y2 + Z2)-1/2 (2) 

J-l/2--u .I-1/2-v a-I/2-w 

Summation of the results of partial integration with respect to x, y, and a yields a 
reduction to three two-dimensional integrals, 

2qSc(U, v, w) = dx dy [z (x 2 + y2 + z 2) 
3 z = - -  1,,'2 ,1--I/2--u ./-- I,/2--c 

+ cyclic permutations (x, u; y, v;z, w) --+ (y, v;z, w;x, u) 

and (z,w;x,u; y,v). (3) 

The two-dimensional integrals can be further reduced using 

dx dy (x2+y2+z2)  -I/2= d x ~  l n ( ~ T g 7 7 ~ - - - -  , (4) 
0 - ~ V 

where x0, Xl, Y0, and Yl are arbitrary integral boundaries. The remaining one- 
dimensional integrals can be calculated using partial integration and conventional sub- 
stitution for algebraic integrands, 

dx + +b]  = x  + b ] - x  ln[(x 2 a2)l/2 ln[(x 2 a2)l/2 + 

+2'a2-b2[l/2A [ x +  (x2 +--a2)l/2 + 2 b211,/2 

+ b i n d  + (x 2 + a2)1/2], (5) 

where 

~'arctan(x) for a 2 > b 2, 
A(x) = [artanh(x) for a 2 < b 2 . (6) 

Combining the previous results yields a closed form for the electrostatic potential of a 
unit cube: 

2 {  1 ~ 2 ~-~.(- 1 ) i+j  Ci, l Cj, l+l  
qVu, v, w) = 5 ,=o j : o / : o  



× In 
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[( ) l E( 1' C 2 2 C 2 I/2 C2 2 C2,1+2 _[_ C0,/+2 i,I q- Cj,14-1 ol- 1,l+2 --  CI, l+2 i,l ~- C],I+I ~- 

I I 1 2 
q - Z Z Z Z ( - - 1 )  i+j+k+l C a i,l 

i=0 ; :0  k=0 t:0 

x arctan cij Ck, l+2 I (7) ( )':2 j 
C 2 _.}._ C 2 C 2 2 C 2 i,l j,l+l + Cj, I+I i,I + Cj, l+l + k,l+2 

½ 1 I The integration boundaries are defined as c0,0 = - - u ,  cl,o = ~ - u ,  coA = -~: - t : ,  
1 I cl,l = ~ - -v ,  Co,2 = - - ~ - - w ,  and Cl,2 = ½ - w .  The values o f  1+  1 and l + 2  in Eq. (7) 

are defined modulo 3, i.e., co.3 - co,o, etc. The arctan function to be used in Eq. (7) 
takes into account the sign o f  numerator and denominator and yields results between 
- r t  and rt ("atan2" in FORTRAN and C). 

An immediate consequence of  Eq. (7) is the electrostatic potential at the center of  
a unit cube 

~bc(0,0,0) = 3 In (31/2 + 2) - ~/2. (S) 

Previous calculations o f  qSc(0, 0, 0) involved rather elaborate manipulations [1, 3]. 

3. Calculation of  the electrostatic potential o f  a square 

In two-dimensional  electrostatics, the charge interaction (Green's function o f  the 
Laplacian) is given by - l n  r, where r is the distance. The electrostatic potential ~bs o f  

r I 112 with unit charge density will again be calculated by integration. ~bs a square t -  ~, ~ 
is also the electrostatic potential o f  a square cylinder that is infinitely extended in z 
direction. The potential at a point with Cartesian coordinates (u, v) is written as 

l : , / 2  : , , /2  
dx dy  In [(x - u) 2 + (y  - v) 2] . (9) 

~bs(U' v) = - 2  ,i-1/2 ,i-1/2 

Elementary integration yields 

l ~ - ~ [ x i Y j l n ( x 2 ~ - y 2 ) - - 3 x i v /  
~s(U,V) = - 5  i=0 ;=0 

arctan xi yj ] +y2 - -  + x 2 arctan (10)  yj ~-, ' 
J 

I 1 1 1 w h e r e x o = - $ - u ,  x l =  - -u ,  Y o = - ~ - v ,  and y l = ~ - v .  The appropriate arctan 
function to be used in Eq. (10) yields values between - r t /2  and re/2 ("atan" in 
FORTRAN and C). 
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4. Multipole expansion 

The electrostatic potential of  a cube can be expanded in "kubic" harmonics, i.e., 
harmonic functions with cubic symmetry [1, 4, 8-10]. For the exterior, one obtains 

¢~c(r) = . . . .  1 q- C4 g 4 ( r ) r  - 9  + C 6 K 6 ( r ) r  -13 + , (11) 
F 

where r = (u ,  v,w),  r =  Ir[. With T. = u " +  v"+  w n, the kubic harmonics of order 4 and 
6 can be written as [10] 

3 
K 4 ( r ) = T 4 -  ~ r 4, 

15 r2 
K6(r)  = T6 - ] ~  T4 

(12) 

30 r6" +~--~ (13) 

For this form, the expansion coefficients are C4 = -7 /192  and C6 = 11/192 [1, 7]. 
For the interior of  the cube, we derive the multipole-expansion coefficients of order 

2, 4, and 6 from a direct Taylor expansion in x direction. The angular dependence can 
then be inferred by cubic symmetry. I The electrostatic potential on the x axis can be 
expressed as 

1/2--u 

Oc(u,O,O) = dx f ( x ) ,  (14) 
d - l/2--u 

where 

[,/2 [z/2 
dy dz (x 2 + y2 + z 2) --1/2 

f ( x )  ~- a - I~2  d - l ~ 2  

= 2 In (4x2 + 2)1/2 + 1 _ 2x arctan 4x(4xZ + 2)1/2 (15) 
(4x 2 + 2) 1/2 - 1 16x 4 + 8x 2 - 1" 

Taylor expansion of ~bc(u,0, 0) around u - - 0  yields the expansion 

~bc(r) = 3 In (3'/2 + 2) n 2n r2 40 308 
2 3 2431/2K4(r)- 196831/2K6(r)+ . . .  . (16) 

Fig. 1 shows the electrostatic potential ~bc along the directions (u,0,0), (u, u,0), and 
(u ,u ,u)  calculated from the exact result Eq. (7) and the expansions (11) and (16), 
both including terms up to K4. The expansions show the largest disagreement near 
the surface of  the cube (u = 1) where they start to diverge. Otherwise, they closely 
reproduce the exact potential [Eq. (11) for r ~ oo and Eq. (16) for r --+ 0]. 

The divergent behavior reflects an inherent problem of the near- and far-field ex- 
pansions. By construction, the Laplacians of Eqs. (11) and (16) are a delta function 
at r = 0 and a constant -4n ,  respectively, independent of  the order of the expansions. 

I Some higher-order kubic harmonics are degenerate [9], requiring two independent expansion directions to 
get the correct angular dependence. 
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Fig. 1. Electrostatic potential ~c(U,V,w) of a homogeneously charged cube. Panels A, B, and C show q~c 
for directions (u,0,0), (u,u,O), and (u,u,u) as a function of u, respectively. The insert in panel A shows a 
unit cube illustrating the directions A, B, and C. The solid line is the exact result Eq. (7). The dashed and 
dot-dashed lines are the expansions Eq. (11) and (16) up to K4 for the exterior and interior, respectively. 
The vertical dotted line at u = 0.5 indicates the boundary of the cube. 

The former corresponds to a unit point charge and is correct only outside the cube; 
the latter corresponds to a homogeneous charge density and is correct only inside the 
cube. 

5. Conclusion 

Nijboer and Ruijgrok [1] analyzed the difference between the energy per particle in 
a Wigner  lattice and the energy o f  a point charge in the field of  the other charges. 
These authors studied an infinite replication o f  neutral cubes consisting of  a unit point 
charge at the center and a compensating background. A reduction o f  the electrostatic 
potential ~c of  a homogeneously charged cube to a one-dimensional integral resulted 
in 

ffgc(U,V,w)= 8 fo c~dt t-2 ~ [h(u,t)h(v,t)h(w,t)], (17) 

where 

h(x,t)=erf[ (x + ½)t] - e f t [  ( x -  ½)t] (18) 
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and erf is the error function. 2 The solution of the one-dimensional integral in Eq. (17) 
would give the closed form Eq. (7) of this work. Eq. (7), numerical integration of 
Eq. (17), and direct Monte Carlo integration of Eq. (1) were compared for a few 
hundred points and gave identical results within the error margins of the numerical in- 
tegration in Eq. (17) and the statistical errors of the Monte Carlo procedure. Eq. (7) has 
the advantage of being analytical. It can be evaluated fast and with arbitrary precision 
on the computer. 

The electrostatic potential qSc(0,0,0) at the center of the cube as listed in Eq. (8) 
can be used to correct effectively for finite-size effects in computer simulations of 
ionic systems under periodic boundary conditions, when minimum-image electrostatics 
is used [11]. An example is the calculation of single-ion chemical potentials [2-6], 
where the electrostatic energy of an excess ion has to be calculated. The system-size 
dependence is greatly reduced if the excess charge is compensated with a homogeneous 
background. The electrostatic energy u of the excess charge q at r = 0 is then the sum 
of  the interactions with the other charges qi at r i and with the background, 

N 

u = q Z qi/ri -t- q2q~c(0, 0, O)/L, 
i=l 

(19) 

where a cubical box of length L is used. 
Another application is the calculation of electrostatic potentials when charges are 

given on a grid, for instance, when ionic density distributions are known [12]. Usually, 
the grid charges are assumed to be point charges. In an improved description, the 
charges are smeared out over the grid cells. The electrostatic potentials can then be 
calculated using Eq. (7) or the multipole expansions Eqs. (11 ) and (16). This eliminates 
the singularities in the electrostatic potential and gives a more accurate description near 
local charge concentrations. 

Note added in proof 

I am indebted to Dr. Michael Trott (Wolfram Research) who after reading a preprint 
pointed out several earlier calculations of  the potential of a cube in the context of 
gravitational fields. Most notably, the problem was studied by MacMillan [13] and 
Waldvogel [14] (see also [15]). 
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