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Both wire-wound solenoids and cylindrical magnets can be approximated as ideal azimuthally
symmetric solenoids. We present an exact solution for the magnetic field of an ideal solenoid in an
easy to use form. The field is expressed in terms of a single function that can be rapidly computed
by means of a compact efficient algorithm, which can be coded as an add-in function to a
spreadsheet, making field calculations accessible to introductory students. These expressions are not
only accurate but are also as fast as most approximate expressions. We demonstrate their utility by
simulating the dropping of a cylindrical magnet through a nonmagnetic conducting tube and
comparing the calculation with data obtained from experiments suitable for an undergraduate
laboratory. © 2010 American Association of Physics Teachers.
�DOI: 10.1119/1.3256157�
I. INTRODUCTION

Solenoids and cylindrical magnets are staples of introduc-
tory physics laboratory experiments and demonstrations.
When it comes time to put theory to the test, simple models
for these objects are needed. An idealized solenoid—a sole-
noid with strictly azimuthal current in a thin sheet wrapped
around a right circular cylinder—can serve as a reasonable
model of an actual wire-wound solenoid and can serve as an
even better model of a permanent cylindrical magnet, pro-
vided that its magnetization is sufficiently uniform.

The magnetic field of an ideal solenoid of finite length can
be expressed in terms of elementary functions only along its
symmetry axis. At off-axis points, calculation is much more
difficult and introductory level students usually have no tools
for obtaining even approximate values for the field except at
very large distances where the field resembles that of a point
dipole.

It is well known that the field due to a circular current loop
can be written in terms of elliptic integrals, and thus by treat-
ing the ideal solenoid as a stack of loops, its magnetic field
can be obtained by straightforward integration. Alternatively,
the field may be derived by solving a boundary-value prob-
lem with cylindrical symmetry. Either way, exact expressions
for the field have been known for over a century and can be
expressed using various special functions such as elliptic in-
tegrals, Heuman’s lambda function, various Bessel functions,
and hypergeometric functions.1–4 Some of these expressions
look quite complicated and may appear difficult to use.

There are many occasions in which calculations involving
solenoid fields may arise. As a convenient tool for such situ-
ations, we present an exact solution in a form that is alge-
braically less complicated, does not require any previous
knowledge of special functions, and comes with a numerical
algorithm that is simple and efficient. The field is expressed
in terms of a single function, a generalized complete elliptic
integral. This function is completely defined by an integral
whose form occurs naturally in problems involving cylindri-
cal symmetry. Numerical values can be computed by means
of an algorithm that can be easily coded on a programmable
calculator or employed as a user-defined function or macro
in a spreadsheet. In this form, the finite-length ideal solenoid

model is as simple and fast to use as the point dipole model.
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This paper presents these exact expressions for the mag-
netic field of an ideal solenoid and its self-inductance and
provides a brief illustration of the effectiveness of these ex-
pressions by simulating the dropping a cylindrical magnet
through a nonmagnetic conducting tube and comparing the
calculations with the results of some simple experiments.

II. THE GENERALIZED COMPLETE ELLIPTIC
INTEGRAL

Certain integrals occur naturally in determining fields with
cylindrical symmetry. They are special cases of a function
defined by a generalized complete elliptic integral,

C�kc,p,c,s� = �
0

�/2 �c cos2 � + s sin2 ��d�

�cos2 � + p sin2 ���cos2 � + kc
2 sin2 �

.

�1�

Appendix A describes the code for an efficient numerical
algorithm for calculating values for C. The example code is
presented in a version of BASIC that can be directly used as a
user-defined function in a spreadsheet or converted to other
programming languages. Appendix A also contains further
information about C, including the relation of C to other
forms of elliptic integrals and links to code.

III. MAGNETIC FIELD EXPRESSIONS

Consider a cylinder of length 2b and radius a wrapped by
an azimuthal sheet of current Itotal, equivalent to a tightly
wound solenoid with a number of turns per unit length n
carrying a current I, that is, Itotal=2bnI. The magnetic mo-
ment � of the solenoid is �=2bnI�a2. It is well known that
along the symmetry axis of a such a solenoid, the field takes
the form

Bz =
�0nI

2 � z + b
��z + b�2 + a2

−
z − b

��z − b�2 + a2� , �2�

where we have used cylindrical coordinates �� ,� ,z�, with
the origin at the center of the solenoid. Equation �2� reduces

to Bz=�0nI for an infinite solenoid. For the general case �see
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Appendix B for an outline of the derivation�, the field com-
ponents are

B� = B0��+C�k+,1,1,− 1� − �−C�k−,1,1,− 1�� �3�

and

Bz =
B0a

a + �
��+C�k+,�2,1,�� − �−C�k−,�2,1,��� , �4�

with

B0 =
�0

�
nI , �5�

z� = z � b , �6�

�� =
a

�z�
2 + �� + a�2

, �7�

�� =
z�

�z�
2 + �� + a�2

, �8�

� =
a − �

a + �
, �9�

k� =�z�
2 + �a − ��2

z�
2 + �a + ��2 . �10�

These compact forms involve only the single function C.
They compute quickly and accurately both inside and outside
the solenoid and are mathematically well-behaved except on
the edge of the current sheet at �=a and z= �b.

Equations �3� and �4� reveal that if distances are measured
in units of a, then the magnetic field lines of an ideal sole-
noid depend only on the ratio b /a. Figure 1 shows the field
lines for a solenoid with b=5a using the line integral convo-
lution method employed by Sundquist5 and Belcher. Using
Eqs. �3� and �4� for the field and the algorithm for C, we
were able to produce the image in Fig. 1 using their
program6 in a matter of seconds. The behavior of field lines
within the solenoid contrasts sharply with that of external
field lines and indicates why a single approximate expression
in terms of elementary functions has difficulty representing

Fig. 1. Field lines of an ideal solenoid with a length that is five times its
diameter.
the field at both near and far distances.
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A. Limits

Along the axis of the solenoid ��=0�, k�=�=1 and
C�1,1 ,1 ,1�=� /2, and thus Eq. �4� reduces to Eq. �2�.

As b→0 with 2bnI= Itotal remaining finite, a solenoid be-
comes a current loop, and the field expressions in Eqs. �3�
and �4� with 0	b
a approximate those of a current loop.
For b=0 they take the form

B� =
�0

�

Itotalaz

�z2 + �� + a�2�3/2C�k1,k1
2,− 1,1� �11�

and

Bz =
�0

�

Itotala�� + a�
�z2 + �� + a�2�3/2C�k1,k1

2,1,�� , �12�

where

k1
2 	

z2 + �a − ��2

z2 + �a + ��2 . �13�

At large distances from the solenoid �r�a ,b�, the field re-
duces to that of a point dipole,

B� =
�0�

4�

3�z

r5 , Bz =
�0�

4�

�2z2 − �2�
r5 , �14�

with

r2 = �2 + z2. �15�

B. Inductance

It is also possible to derive an exact expression for the
mutual inductance of two coaxial ideal solenoids.7–9 The
self-inductance L of a solenoid can then be obtained as a
special case. In our notation the self-inductance can be ex-
pressed compactly as

L = 8
3�0�na�2��a2 + b2C�k0,1,1,2k0

2� − a� , �16�

where

k0 =
b

�a2 + b2
. �17�

IV. FALLING MAGNETS

A. Previous work

Faraday’s law is often dramatically demonstrated by drop-
ping a small highly magnetized cylindrical permanent mag-
net �radius a, length 2b, mass m, and magnetic moment ��
into a vertical nonmagnetic tube of conductivity �, relative
permeability of 1, length L, inside radius r, and wall thick-
ness w
r �Fig. 2�.10–15 The small masses and large magnetic
moments of rare earth magnets give them a long “hang”
time. After the initial surprise subsides, students begin to ask
questions “How does the time of fall depend on the diameter
and the conductivity of the tube?” and “How does it depend
on the length of the magnet?”

This experiment or similar ones have been analyzed in
several papers. Pelesko et al.16 and Roy et al.17 use dimen-
sional analysis to show that in a thin-walled tube, the speed
of the falling magnet is proportional to �mgr4� / ���2w�,

which demonstrates the power of dimensional analysis, al-
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though it is unable to provide information about how the
speed depends on the geometry of the magnet. Other papers
employ Faraday’s law but differ in the ways they model the
cylindrical magnet. Hahn et al.10 derive Eq. �27� for the force
on a magnet oscillating in a tube but evaluated the force by
treating the magnet as a point dipole. Knyazev et al.18 treat
only the point dipole case but expanded the analysis to in-
clude high speeds not attainable in demonstrations. Levin et
al.12 note that the ideal solenoid’s external field is equivalent
to that of two uniformly �magnetically� charged disks at the
top and bottom of the magnet but use point monopoles in-
stead of disks in their calculations. Iñiguez et al.19 model the
interaction of the magnet and the tube by means of an elabo-
rate equivalent resistor network and provide a sample calcu-
lation in which the magnet is treated as a point dipole. Cal-
culations based on the dipole approximation do not predict
experimental results with much accuracy when the magnet
fits closely within the tube, especially when the length of the
magnet is greater than its diameter.

After deducing Eq. �28�, MacLatchy et al.20 model the
cylindrical magnet as a stack of several polygonal loops and
then compute its field from the Biot–Savart law. Although
slightly cumbersome, this approach does offer adjustable ac-
curacy. Partovi and Morris21 offer a comprehensive treatment
of a cylindrical magnet moving at an arbitrary nonrelativistic
velocity in an infinite tube of arbitrary thickness and perme-
ability. This is a boundary-value problem with cylindrical
symmetry that they solve, expressing the drag force on the
magnet in terms of integrals involving Bessel functions with
complex arguments. Their results are exact, though restricted
to a steady state situation. The integral expressions in their
paper are daunting, but the authors provide sample Math-
ematica code for computing them.

B. Theory

Because Refs. 10, 20, and 21 discuss the theory in some
detail, we provide only a quick sketch here. Choose cylindri-

Fig. 2. Geometry for a magnet falling though a nonmagnetic conducting
tube.
cal coordinates with the z-axis vertical and the origin located
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�momentarily� at the center of the magnet. The conductivity
of the tube can be determined by measuring its resistance per
unit length RL,

RL =
1

�2�wr̄
, �18�

where r̄=r+w /2. As the magnet falls, the changing magnetic
field within the tube walls is accompanied by an electric field
that drives currents, which cause Ohmic heating. Although
currents in the tube induce currents within the permanent
magnet, it is easy to show that under our experimental con-
ditions, the only significant energy losses are those within the
tube walls. The speed of fall is so slow that air resistance is
also quite negligible. In the following we assume that the
magnet fits closely enough within the tube walls that its axis
remains vertical and cylindrical symmetry is maintained dur-
ing the fall. �When a small diameter magnet falls within a
much larger diameter tube, the axis of the magnet may pre-
cess about the vertical during the fall.�

The electric field within the tube can be deduced by argu-
ing that in the reference frame of the falling magnet, there is
only a magnetostatic field. Thus in the frame of reference of
the tube, where the magnet has velocity v, there must be an
electric field E=−vB, or E�=−vzB�. Alternatively, the
field can be obtained from Faraday’s law by considering a
horizontal circular loop of radius r̄ lying within the tube
walls at height z� above the center of the magnet. We define
the upward magnetic flux though such a loop as

��z�� = �
0

r̄

Bz��,z��2��d� . �19�

The emf around the loop is

emf = −
d�

dt
= −

d��z��
dz�

dz�

dt
= vz

d��z�
dz

, �20�

where vz=−dz� /dt.
If we take two such loops separated by the vertical dis-

tance dz, we can visualize them as the edges of a small
cylindrical Gaussian pill box. Because there are no magnetic
monopoles, the total magnetic flux leaving the closed surface
of the box must be zero,

��z + dz� − ��z� + B��r̄,z�2�r̄dz = 0 = d�

+ B��r̄,z�2�r̄dz . �21�

If we combine Eqs. �21� and �20�, we have

emf = − �2�r̄vz�B� = E�2�r̄ . �22�

The force acting on the falling magnet can be deduced
from energy considerations. The electric field within the tube
drives currents that dissipate energy at a rate per unit volume
of �E�

2 , which can be integrated over the volume of the
tube’s wall to obtain the total power lost P. If the walls are
thin, the power loss when the magnet is at height z above the
bottom of the tube is

P =� �E�
22�wr̄dz = 2�wr̄�vz

2

�L−z

B�
2�r̄,z��dz� = − vzFdrag. �23�
−z
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Alternatively, the Lorentz forces acting on the currents can
be calculated directly. A horizontal slice of tubing of height
dz located at height z above the center of the magnet is a
circuit with electrical resistance

RE =
1

�

2�r̄

wdz
, �24�

and thus the current due to the emf around the ring is

dI =
emf

RE
= − �vzwB�dz . �25�

The vertical force exerted on this current by B is

dFz = − 2�r̄dIB� = �2�r̄wvzB�
2dz , �26�

and the force on the magnet follows from Newton’s third
law. The total vertical force on the magnet is the sum

Fdrag = −
vz

RL
�

−z

L−z

B�
2�r̄,z��dz�, �27�

in agreement with Eq. �23�.
The computation of the magnetic field is so rapid using

Eq. �3� for B� that the drag force in Eq. �27� can be used to
numerically integrate the equation of motion for the falling
magnet, even though an integration must be performed at
each time step.

The powerful but light-weight magnets used in demonstra-
tions reach a constant velocity within a fraction of a second.
Because the magnitude of B� declines extremely rapidly with

Table I. Physical and electrical properties of the tube. The tube’s resistance
per unit length RL was determined by connecting it to a dc power supply
with alligator clips, running a current I through the length L of the tube, and
measuring the potential drop �V from clip to clip. The electrical conductiv-
ity � was determined using the measured values of the tube’s inner radius r
and wall thickness w.

Physical Electrical

L=1.478 m Length between clips=1.475 m
r=7.25 mm I=4.95 A
w=0.7 mm �V=4.49 mV
Mass=434 g �=56.0106 S /m

RL=5.3710−4 � /m

Table II. Properties of the six cylindrical magnets wit
�b /a� dropped from rest through a copper tube. The
terminal velocity using Ref. 21 or Eq. �28�. The la
numerically integrating the equations of motion of a

No. b /a
m
�g�

�
�A m2�

1 1.0 12.1 1.76
2 1.5 17.9 2.36
3 2.0 23.8 3.23
4 3.0 36.4 5.00
5 4.0 48.2 6.37
6 1.0 12.9 1.17

aReference 21.
b
Equation �28�.
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z, this terminal velocity can be calculated by equating Fdrag
to mg and, with little error, setting the limits of integration to
��,

vterminal =
− mgRL


−�
� B�

2�r̄,z��dz�
. �28�

C. Experiment

We dropped cylindrical magnets through a long copper
tube, measured the total time of fall, and then compared the
results with calculations based on Eqs. �27� and �28�. We
used equipment available in a typical undergraduate physics
laboratory and followed procedures that might be employed
in an introductory level course. We used a copper plumbing
tube �see Table I�, which is about 99% pure copper. Its mag-
netic permeability was not measured but taken to be the
same as pure copper. The resistance per unit length was de-
termined by running a current of several amperes through the
tube while measuring a few millivolts potential difference
across it. �The conductivity of pure copper is about 110% of
the standard IACS value, 5.8108107 S /m at 20 °C, and
the conductivity of typical copper tubing for plumbing is
typically about 85% of the IACS value.�

We obtained six cylindrical magnets with various lengths
but with the same 0.5 in. �12.7 mm� diameter. We determined
the magnetic moment � for each one by using a small mag-
netometer to measure the field strength at several points
along its axis and then adjusting the value of �nI� in Eq. �2�
to give a best fit.

We held a magnet vertically by its upper 4 mm and in-
serted it into the top of the tube and released it while manu-
ally starting a timer that stopped when the bottom millimeter
of the magnet activated a photogate placed at the bottom of
the tube. The results are summarized in Table II. In addition
to the measured average velocity of each falling magnet,
Table II shows the terminal velocities computed from Eq.
�28� and from the lengthy exact expression for the terminal
velocity in Ref. 21. �Both calculations were programmed in
Python using the SciPy libraries and a Python version of the
function C.� The numerical agreement between these two
ways of computing the terminal velocity validates the ap-
proximations used in deriving Eq. �28�.

We also used Eq. �27� for the drag force on a falling mag-
net to numerically solve the equations of motion for z�t� and

in. diameters and various ratios of length to diameter
age speed of fall is compared to predictions of the
lumn is the predicted average velocity obtained by
et experiencing the drag force given by Eq. �27�.

erage

/s� vt
a vt

b Vaverage

687 0.0669 0.0670 0.0674
045 0.1050 0.1050 0.1058
275 0.1243 0.1243 0.1254
825 0.1710 0.1711 0.1731
473 0.2451 0.2451 0.2486
513 0.1615 0.1616 0.1622
h 0.5
aver

st co
magn

vav

�m

0.0
0.1
0.1
0.1
0.2
0.1
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thus the total time of fall. Because of their differing lengths,
the center of each magnet started out at a different height in
the tube, resulting in slight differences in their initial behav-
iors. Figure 3 shows that the terminal velocity was achieved
within a few tenths of a second, resulting in terminal speeds
that are only slightly smaller than the average speeds of fall.

Even though the experimental procedures were not very
sophisticated, there was excellent agreement between theory
and experiment. The experiment thus seems to be within the
capabilities of introductory students. How much of the simu-
lations would be appropriate to ask them to do? That depends
on the level of the class and the amount of time allotted to
this project. It is possible to perform the computation of the
terminal velocity at an introductory level if students are com-
fortable with spreadsheet programs. This simplification is
possible for three reasons. First, the function C can be added
to a spreadsheet as a user-defined function �see Appendix A�,
and B� can be computed and graphed. Second, B� is a sym-
metrical function of z, and thus the integral for vterminal in Eq.
�28� needs only to be evaluated from 0 to �. And third, at
large enough values of z, B� approaches the dipole form �Eq.
�14�� and thus B�

2�z−8 in the integrand for vterminal, allowing
the integral to be truncated at relatively small values of z.
Students can plot B�

2 in a spreadsheet and see that it starts at
0 at z=0, reaches a sharp maximum near z=b, and decreases
by several orders of magnitude by z=3b. As a result, the
entire integral may be computed as a simple Riemann sum
from z=0 to about z=3b using a step size �z�0.01b. Any
concern about truncation errors could be addressed by calcu-
lating the remainder of the integral analytically using the
dipole approximation for B�. More advanced students might
be acquainted with other programs or numerical methods for
handling these tasks, but the elementary method we have
described gives results that are within about 1% of the results
of the more sophisticated tools and can easily be improved
by using smaller size steps.

V. COMMENTS

We have presented compact expressions for the magnetic
field of an ideal solenoid and have demonstrated that they are
easy to use, remarkably fast, and can readily be incorporated

Fig. 3. Speeds of magnets dropped through a copper tube. Each magnet was
inserted into the tube and then released from rest. The plots are numerical
solutions of the equation of motion including the drag force during the first
fifth of a second after release.
into spreadsheet calculations, making it possible to simulate
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a variety of situations involving cylindrical magnets. For the
falling magnet demonstration, we have shown that a simple
treatment provides results that agree with those from a more
complicated analysis and are consistent with simple mea-
surements. The methods used here can be applied to other
cylindrically symmetric situations such as the electric fields
of uniformly charged rings or cylindrical shells. Such fields
can then be written in terms of the C function with all the
advantages that have been described here.

We hope that these expressions for the magnetic field will
help dispel the notion that exact expressions for the field of
an ideal solenoid are necessarily complicated or computa-
tionally slow and will encourage student investigations of
magnetic phenomena.
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APPENDIX A: GENERALIZED COMPLETE
ELLIPTIC INTEGRAL

The generalized complete elliptic integral in Eq. �1� can be
efficiently computed using an algorithm by Bulirsch22 based
on work of Bartky23 who extended ideas of Landen and
Gauss. This algorithm converges so quickly that unless
kc
1, only three or four passes are necessary. The code
shown in Fig. 4 is in a version of BASIC that can be loaded as
a user-defined function to the CALC spreadsheet program
�part of the OpenOffice �Ref. 24� software suite� where it can
be used as a normal spreadsheet function, making C acces-
sible to nonprogrammers. Similarly, Microsoft Excel allows
user-defined functions coded in Visual Basic. This code is
simple enough to be treated as pseudocode that can be easily
adapted to other languages. Programs in FORTRAN and C code
may be downloaded25 or found in the first edition of Numeri-
cal Recipes.26 Code in various programming languages is
also available from the authors.

Later editions of Numerical Recipes no longer mention the
C function and adopt Carlson’s more general approach,
which applies to incomplete as well as complete elliptic in-
tegrals. In terms of Carlson’s functions, RF and RC, C is

C�kc,p,c,s� = cRF�0,kc
2,1� + 1

3 �s − pc�RJ�0,kc
2,1,p� . �A1�

Code for computing Carlson’s functions may be found in the
current editions of Numerical Recipes27 and elsewhere. For
complete elliptic integrals, Bulirsch’s algorithm is more
compact and also has some other advantages.28 This gener-
alized complete elliptic integral includes all three standard
Legendre forms as special cases,

K�k� = C�kc,1,1,1�, E�k� = C�kc,1,1,kc
2� ,

��n,k� = C�kc,n + 1,1,1� , �A2�

where k=�1−kc
2. In algebraic work, the following identity is

useful:

C�kc,�
2,2 − �,�� − C�kc,1,1,1� 	 �1 − ��C�kc,�

2,1,�� .
�A3�
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APPENDIX B: DERIVATION OF THE SOLENOID
FIELD

The magnetic field of an ideal solenoid can be computed
directly from the Biot–Savart law. The necessary algebra is
only slightly more complicated than that which is needed to
derive Eq. �2�, which is commonly presented to students in
introductory courses.

The surface of the solenoid is divided into circular strips
of width dz� as in Fig. 5. The current in such a strip is nIdz�.
To calculate the field at a point x, we apply the Biot–Savart
law to this circular loop and then sum the fields of the stack
of strips that form the solenoid surface,

B�x� = �
−b

b �0

4�
 �nIdz��

dx�  R

�R�3
, �B1�

where R=x−x�, and points along the strip are specified by
the position vector

x� = a cos ��î + a sin ��ĵ + z�k̂ , �B2�

Fig. 4. Algorithm for the generalized complete elliptic integral C�kc , p ,c ,s�
coded in a version of BASIC for use as an add-in function in the CALC

spreadsheet.
and an infinitesimal step taken along the strip is
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dx� = �− a sin ��î + a cos ��ĵ�d��. �B3�

Because of cylindrical symmetry, we are free to choose co-
ordinates in which x lies in the x−z plane, causing By�x� to
vanish and allowing Bx�x� to be identified with B��x�,
prompting the notation

x = �î + zk̂ . �B4�

Because

R = �� − a cos ���î − a sin ��ĵ + �z − z��k̂ , �B5�

and

dx�  R = ad����z − z��cos ��î + �z − z��sin ��ĵ

+ �a − � cos ���k̂� , �B6�

the field can be written as

B�x� = �
−b

b

dz���0nIa

2�
��

0

�

d��


�z − z��cos ��î + �a − � cos ���k̂

��2 − 2a� cos �� + a2 + �z − z��2�3/2 . �B7�

Integration over z� is elementary,

B��x� = �− B0a

2
��

0

�

d��cos ��

� 1

�z+
2 + �2 + a2 − 2a� cos ��

−
1

�z−
2 + �2 + a2 − 2a� cos ��

� �B8�

Fig. 5. Geometry of an ideal solenoid showing the notation used in applying
the Biot–Savart law.
and
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Bz�x� = �B0a

2
��

0

�

d��
�a − � cos ���

��2 + a2 − 2a� cos ���

 � z+

�z+
2 + �2 + a2 − 2a� cos ��

−
z−

�z−
2 + �2 + a2 − 2a� cos ��

� . �B9�

To put these expressions into a form resembling the defini-
tion of the C function, we introduce a change in integration
variable,

2� 	 � − ��, �B10�

and after using some trigonometric identities, we observe
that

z�
2 + �2 + a2 − 2a� cos �� = �z�

2 + �� + a�2�

�cos2 � + k�
2 sin2 �� .

�B11�

The radial component of the field then becomes

B��x� = B0�
0

�/2

d��cos2 � − sin2 ��

� �+

�cos2 � + k+
2 sin2 �

−
�−

�cos2 � + k−
2 sin2 �

� .

�B12�

Upon comparing each of the terms in this integrand to the
integrand in the definition of C in Eq. �1�, we recognize that
the radial field can be identified as Eq. �3�.

Similarly, the longitudinal component of the field becomes

Bz�x� =
B0a

�� + a��0

�/2

d�
cos2 � + � sin2 �

cos2 � + �2 sin2 �

� �+

�cos2 � + k+
2 sin2 �

−
�−

�cos2 � + k−
2 sin2 �

� ,

�B13�

which can be recognized as Eq. �4�.
To determine the magnetic field of a current loop �0	b


a�, it is simplest to return to Eqs. �B8� and �B9�, treat b as
a small quantity, and expand the integrands to first order in b.
Then repeat the transformations in Eqs. �B10� and �B11� to
express the integrals in forms resembling the C function. The
results are given in Eqs. �11� and �12�.
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