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We investigate the difficulties that students in calculus-based introductory physics courses have with
the concepts of symmetry, electric field, and electric flux which are important for applying Gauss’s
law. The determination of the electric field using Gauss’s law requires determining the symmetry of
a particular charge distribution and predicting the direction of the electric field everywhere if a high
symmetry exists. Effective application of Gauss’s law implicitly requires understanding the
principle of superposition for electric fields. Helping students learn when Gauss’s law can be readily
applied to determine the strength of the electric field, and then helping them learn to determine the
appropriate shape of Gaussian surfaces if sufficient symmetry exists, can help develop their
reasoning and problem-solving skills. We administered free-response and multiple-choice questions
and conducted interviews with individual students using a think-aloud protocol to elucidate the
difficulties that students have with the concepts of symmetry, electric field, and electric flux. We also
developed a multiple-choice test that targets these conceptual issues to obtain quantitative
information about their difficulties and administered it to 541 students in the introductory
calculus-based physics courses and to upper-level undergraduates in an electricity and magnetism
course and to graduate students enrolled in a teaching assistant seminar course. We find that
undergraduate students have many common difficulties with these concepts. © 2006 American
Association of Physics Teachers.
�DOI: 10.1119/1.2238883�
I. INTRODUCTION

A major goal of most calculus-based introductory physics
courses is to help students develop problem solving and rea-
soning skills.1–4 Gauss’s law of electricity is an important
topic in the second semester of most calculus-based intro-
ductory physics courses. Learning to reason whether Gauss’s
law can be exploited in a particular situation to determine the
electric field, without having to evaluate complicated inte-
grals, can provide an excellent context for helping students
develop a good grasp of symmetry considerations. Unfortu-
nately, students often memorize a collection of formulas for
the magnitude of the electric field for various geometries,
without paying attention to symmetry considerations. Stu-
dents apply these formulas without being able to differentiate
between electric field and electric flux. They have difficulty
identifying situations where Gauss’s law is useful and over-
generalize results obtained for a highly symmetric charge
distribution to situations where they are not applicable. Most
textbooks do not sufficiently emphasize symmetry consider-
ations or the chain of reasoning required to determine if
Gauss’s law is useful for calculating the electric field.

To investigate student understanding of the concepts of
symmetry, electric field, and electric flux, we administered
free-response and multiple-choice questions and conducted
interviews with 15 individual students using a think-aloud
protocol.5 We then developed a multiple-choice test with 25
conceptual questions that addresses these issues and admin-
istered it to 541 students in the introductory calculus-based
physics courses in eight different classes to obtain a quanti-
tative understanding of the nature of the difficulties. The test
was also administered as a pre- and post-test to undergradu-
ates enrolled in an upper-level electricity and magnetism
�E&M� course and to graduate students enrolled in a teach-
ing assistant �TA� seminar course. The tests and interviews
explored the extent to which students have become proficient

in exploiting symmetry and in making conceptual predictions
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about the magnitude and direction of the electric field for a
given charge distribution using Coulomb’s or Gauss’s laws.
The test also explores whether students can distinguish be-
tween electric field and electric flux, identify situations in
which Gauss’s law can readily be used to calculate the elec-
tric field strength from the information about the electric
flux, and the shapes of the Gaussian surfaces that would be
appropriate in those cases.

II. PREVIOUS INVESTIGATIONS RELATED TO
ELECTRICITY AND MAGNETISM

Investigation of student difficulties related to a particular
physics concept is important for designing instructional strat-
egies to reduce them.6–10 Prior investigations related to elec-
tricity and magnetism have included difficulties with general
introductory concepts, electrical circuits, and superposition
of the electric field.6–10 Maloney et al.6 developed and ad-
ministered a 32 question multiple-choice test �the Conceptual
Survey of Electricity and Magnetism� that surveys many im-
portant concepts covered in the introductory physics courses
and is suitable for both calculus- and algebra-based courses.
They found that students have common difficulties with fun-
damental concepts related to electricity and magnetism. Mc-
Dermott et al.7 performed an in-depth investigation of the
difficulties students have with electrical circuits and devel-
oped exemplary tutorials and inquiry-based curriculum to
significantly reduce these difficulties among introductory
physics students and pre- and in-service teachers.12 Engel-
hard and Beichner8 have developed conceptual assessments
related to electrical circuits. Rainson et al.9 investigated dif-
ficulties with the superposition of electric fields by adminis-
tering written questions. Belcher et al.10 and Christian and
Belloni11 have developed visualization tools to improve stu-
dent understanding of physics concepts including those re-

lated to electricity and magnetism.
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III. METHOD

Our investigation of student difficulties in discerning sym-
metry and applying Gauss’s law was performed using two
methods: the design and administration of free-response and
multiple-choice questions to elicit difficulties in a particular
context and in-depth audio-taped interviews with individual
students using a think-aloud protocol5 while they solved
those problems. A principal advantage of written tests is that
they can be administered to large student populations.
Multiple-choice tests are easy and economical to administer
and to grade, have objective scoring, and are amenable to
statistical analysis that can be used to compare student popu-
lations or instructional methods. The main drawback is that
thought processes are not revealed completely by the an-
swers alone. However, when combined with interviews with
a subset of individual students, well-designed tests can serve
as excellent educational tools. Conceptual multiple-choice
tests have already been designed to assess student under-
standing of force, energy and momentum, and electricity and
magnetism.6,8,13–15 They show that students’ knowledge of
physics is often fragmented and context dependent and that
students share common difficulties.

IV. BACKGROUND

Gauss’s law allows us to relate the net electric flux
through a closed surface to the net charge enclosed by the
surface.

�E = Qenclosed/�0. �1�

Equation �1� implies that if we know the net electric flux
through a closed surface, we can readily find the net charge
inside it. And if we know the net charge inside a closed
surface, we can readily find the net electric flux through it.

In general, Eq. �1� does not mean that we can use Gauss’s
law to readily find the magnitude of the electric field �E� at a
point. Only in situations where the charge distribution has
very high symmetry can we find �E� from the net electric flux
�E. Although there are only three types of symmetry �spheri-
cal, cylindrical, and planar� for which Gauss’s law can
readily be exploited to determine the electric field at various
points from the information about the electric flux, students
need help in identifying when these symmetries are present.

The net electric flux through a closed surface is given by

�E = � E · dA = � �E�cos ��dA� . �2�

The net electric flux �E over a closed �Gaussian� surface can
be exploited to determine the electric field magnitude �E� at
an arbitrary point P on the surface only if the following
conditions are satisfied:

1. We can determine the exact direction of E relative to the
area vector at every point on the closed surface by sym-
metry �only �=0, 180° or ±90° are associated with suffi-
ciently high symmetry�.

2. In some cases, we can divide the closed surface into sub-
sections �for each subsection the electric flux can be
readily calculated for example, the side and two caps of a
cylinder� such that one of the following is true:

�a� �E� is the same everywhere on the subsection due to the

symmetry of the charge distribution.
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�b� E and the area vector �outward normal to the surface�
are perpendicular ��=90° � so that there is no electric
flux through that subsection.

Thus, to determine if the information about the net electric
flux through a closed surface can be exploited to determine
�E� at a point P, we may choose a Gaussian �closed imagi-
nary� surface such that it contains the point P where we want
to determine �E� and �E �cos � is known �by symmetry� to
have a constant value on each subsection of the surface so
that it can be pulled out of the flux integral in Eq. �2�. Then
��dA� equals the total area of the subsection of the surface.

Although students can calculate the electric field without
regard to symmetry using Coulomb’s law and the principle
of superposition, determining the electric field using Gauss’s
law requires an explicit focus on the symmetry of the charge
distribution. The principle of superposition is also a prereq-
uisite for employing Gauss’s law successfully to determine
the electric field �albeit implicit in the actual application of
Gauss’s law� and helps determine if sufficient charge sym-
metry exists in a particular situation. In addition to consider-
ations of symmetry, the area vector and the electric flux are
new concepts that are introduced in the context of Gauss’s
law. Students must be able to distinguish the electric flux
from the electric field, a task that is very difficult. Students
need to learn that the electric flux is a scalar which is positive
and negative depending on the relative directions of the elec-
tric field and area vector, while the electric field at a point is
a vector. They need to learn that the electric flux and the
electric field have different dimensions, that Gauss’s law ap-
plies only to closed surfaces, and that for any closed surface
information about the net enclosed charge is sufficient to
determine the net electric flux through it. On the other hand,
the determination of the electric field at various points due to
a charge distribution depends on the way in which the
charges are distributed and can depend on both the charges
inside and outside the closed surface. For example, the elec-
tric field at various points on a Gaussian surface may vary
from point to point, even though the net electric flux is zero
�and hence the net enclosed charge is zero�.

V. DISCUSSION OF STUDENT DIFFICULTIES

We first administered free-response and multiple-choice
questions and interviewed individual students in several
calculus-based introductory physics courses about concepts
related to symmetry and Gauss’s law. These investigations
provided useful insight into common difficulties students
have with these concepts and also provided guidelines for the
development of a 25 question multiple-choice test that was
then used as a tool to obtain quantitative information about
the extent to which students have common difficulties with
these concepts. Appendix A provides a summary of the de-
velopment of the multiple-choice test. The final version of
the test is in Appendix B. This 50 min test was administered
to 541 students in the calculus-based introductory physics
courses in eight different classes at the University of Pitts-
burgh. Five additional student volunteers were interviewed
�in addition to those interviewed earlier for a total of 15
individual interviews� to obtain a greater understanding of
their difficulties. Two of these classes were honors courses.
The average score on the test was 49%. Table I shows the
percent of students who selected the choices �a�–�e� on Prob-

lems 1–25. The correct responses are italicized. Although
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some questions have a strong single distractor, others have
several distractor choices that are equally popular. In eight of
the test questions, students had to determine the correctness
of three statements. Students identified the correctness of
some of the statements but not others as shown in Table I
�we will discuss these issues in detail later in this section�.
The reliability coefficient16 �, which is a measure of the
internal consistency of the test, is 0.8, which is considered
good by the standards of test design. The point biserial
discrimination16 �PBD� quantifies the ability of a question to
discriminate between students who did well overall and
those who did not. This discrimination index for 16 questions
was more than 0.4. Only four questions had a PBD value less
than 0.3 �only one question with less than 0.2�, which is also
good by the standards of test design.16 The reliability coeffi-
cient and discrimination indices show that the conceptual
difficulties with symmetry and Gauss’s law found using the
test are meaningful.

Table II shows the concepts that were covered and the
questions in the multiple-choice test that addressed them.
The table provides only one of the several ways questions
can be classified. Some of the categories in Table II are sub-
sets of other categories. We have found these subcategories
convenient for classifying student difficulties. The categori-
zation of concepts in Table II is based on student difficulties
and does not necessarily reflect the way experts would cat-
egorize those problems. For example, one of the concept
categories in which we placed Problems 13 and 15 is “dif-
ference between the electric field and electric flux.” Although
the word “flux” is never explicitly mentioned in these ques-

Table I. Percentage of introductory calculus-based physics students �total nu
test. The correct response for each question has been italicized. The averag

Q 1 2 3 4 5 6 7 8 9 10 11 12

�a� 55 3 20 0 14 3 5 4 7 20 4 57
�b� 35 13 57 30 0 11 6 50 66 0 5 6
�c� 5 69 15 5 0 8 81 5 12 19 57 30
�d� 1 7 7 15 0 58 6 35 5 50 6 7
�e� 4 8 1 50 86 20 2 6 10 11 28 0

Table II. Concepts covered and the questions that addressed them in the mu

Concepts

Electric flux
Recognizing the symmetry of the charge distribution

Symmetry of the object versus symmetry of the charge
distribution
Coulomb’s law, superposition, and symmetry considerations
sufficient
Difference between the electric field and the electric flux
Relevance of a closed surface in Gauss’s law
Recognizing the symmetry to determine if it is easy
to exploit Gauss’s law or exploiting Gauss’s law to
determine the electric field
Appropriate Gaussian surface for determining the
electric field for a given charge distribution
Electric field inside hollow nonconducting objects
with different charge distribution
925 Am. J. Phys., Vol. 74, No. 10, October 2006
tions, our investigation shows that students often believed
that because there was no charge enclosed inside the Gauss-
ian surfaces that are exclusively contained in the hollow re-
gion, the electric field must be zero everywhere inside the
hollow region. They were often interpreting zero net electric
flux through a closed surface to imply zero electric field at all
points of the surface. We classified Problems 19, 21, and 23
in the same concept category “difference between the electric
field and electric flux.” As shown in Table I, the most com-
mon misconception in Problem 19 was due to confusion be-
tween the electric field and the electric flux. In Problem 21
the most common incorrect response was choice �a� because
students believed that in order to determine the net electric
flux through a closed surface, knowledge of the charge en-
closed was not sufficient and charges had to be symmetri-
cally distributed �a requirement for determining the electric
field�. The most common incorrect response for Problem 23
was choice �a�, which also arises due to the difficulty in
distinguishing between the electric field and flux. Similarly,
we placed Problem 14 in the category “recognizing symme-
try to determine if it is easy to exploit Gauss’s law¼,” be-
cause many students incorrectly believed that even in experi-
ment 1, Gauss’s law can be used to infer that the magnitude
of the electric field is the same at points A, B, and C.

A. The electric charge and electric flux are scalars

The most common difficulty with Problem 1 was mistak-
enly thinking that the electric flux and/or electric charge are
vectors. In interviews, students justified their response about

of students 541� who selected choices �a�–�e� on Problems �1�–�25� on the
re was 49%.

3 14 15 16 17 18 19 20 21 22 23 24 25

5 12 40 4 0 47 2 22 28 37 35 10 32
0 24 8 10 33 7 3 14 5 15 2 15 33

2 43 18 25 27 34 6 17 13 53 27 22
60 4 42 17 13 56 53 32 17 3 19 12

1 2 5 26 25 6 5 5 18 18 7 29 1

-choice test.

Problem number

1, 7, 8, 9, 12, 18, 20, 21, 23
2, 3, 4, 6, 10, 11, 12, 13, 14, 15,

16, 17, 22, 24, 25
6, 10, 14, 15, 16

2, 3, 4, 14, 16

1, 7, 8, 12, 13, 15, 18, 19, �21, 22�, 23
5, 21, 22

6, 10, 11, 12, 13, 14, 15, 16, 17,
22, 24, 25

6, 11, 22

13, 15, 25
mber
e sco

1

5
1
8
6
2

ltiple
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why the electric flux is a vector by using the following facts:
The expression for flux involves a scalar product of two vec-
tors. Instead of identifying cos � as the angle between the
electric field and the area vector, many students concluded
that the flux is a vector because it involves a cos �. Students
pointed to the fact that the electric flux can have both posi-
tive and negative signs. When asked if it would make sense
to say that the electric flux points at 30° south of west, stu-
dents often avoided a direct response. Their response implied
that for a physical quantity to be a vector, it was not neces-
sary to be able to specify the exact direction. Rather, because
the electric field lines “going out” of a closed surface con-
tribute positively and those “going in” contribute negatively
to the total electric flux through a closed surface, flux must
be a vector. To justify why the electric charge should be a
vector, students often made similar claims that positive
charges point outward and negative charges point inward. It
was clear from the responses that students were often refer-
ring to the electric field but calling it “charge.”

B. The principle of superposition

The performance of many students was closely tied with
their understanding of the principle of superposition. For ex-
ample, Problems 2–4 are related to symmetry and require the
use of the superposition principle to compare the electric
field at various points for a given charge distribution. Many
students had difficulty with the principle of superposition
and could not differentiate between the electric field due to
individual charges at a point and the net electric field. Inter-
views suggest that some believed that only the nearest charge
will contribute to the electric field at a point. Others believed
that the magnitude of the electric field at the desired points in
Problem 2 �and 3� should be the same because they were the
same perpendicular distance from the straight line joining the
three charges. Some students provided more detailed reason-
ing. Instead of viewing it as a problem involving the addition
of three electric field vectors, these students often made
guesses by looking at the distances of points A, B, and C
from the three charges and hoping that the electric field will
somehow work out to be the same at the three points. They
claimed that in Problem 2, point A is closer to one charge
and farther away from the other two charges than point B
which is equidistant from the two charges and not as far
away from the third charge as point A. Therefore, the electric
field at points A and B will be the same if we take into
account all three charges. Because charge is uniformly dis-
tributed on the finite sheet in Problem 3, this type of confu-
sion was even more prevalent. The most common distractor
in Problem 4 implies a similar difficulty. Many students be-
lieved that if charges are uniformly distributed on an insulat-
ing equilateral triangle, the magnitude of the electric field
will be the same everywhere on a concentric imaginary tri-
angle.

C. The electric field inside a hollow nonconducting
object

Problems 13, 15, and 25 assess student understanding of
the electric field inside hollow nonconducting objects of dif-
ferent shapes due to charges on their surface or charges out-
side. Problem 13 was the most difficult question on the test
and only 21% of the introductory students responded cor-

rectly. 55% of the students believed that the electric field

926 Am. J. Phys., Vol. 74, No. 10, October 2006
inside a nonconducting hollow cube with charge uniformly
distributed on its surface will be zero everywhere. Interviews
suggest that some students believed that the hollow region
inside is always shielded from the charges on the surface or
charges outside. This notion of shielding was retained by the
students despite being reminded by the interviewer that the
object on which charges are distributed is not conducting.
Some students explicitly said that the net effect of all the
charges outside must work out to be zero everywhere inside
the hollow region. One student went on to claim that he has
always been amazed at how Gauss’s law can be used to
prove that the electric field in the hollow region inside a
closed object is always zero everywhere, a result that appears
to be counterintuitive to him. Some students even drew
spherical or cubic Gaussian surfaces inside a hollow cube to
argue that because there is no charge enclosed, the electric
field will be zero everywhere according to Gauss’s law. Simi-
lar to Problem 13, the most common difficulty with Problem
15 was assuming that the electric field inside the sphere in
experiment 1 is also zero everywhere. In interviews and free-
response questions, students used reasoning similar to Prob-
lem 13.

For Problem 25, choices �b�–�d� were popular due to the
difficulties with the principle of superposition and the elec-
tric field inside a hollow nonconducting sphere. Interviews
suggest that students who believed that the electric field at
point A is not zero often thought that the sphere with the
uniform surface charge +Q will produce a larger electric field
at that point because one of its sides is only a distance L
away compared to the point charge +Q which is a distance
2L away. At the end of the interview, in response to the query
by some students, the interviewer discussed with them that
for point A, the charge on the sphere can be thought of as a
point charge at the center of the sphere. Students often noted
that this fact is very nonintuitive because of the proximity of
one end of the sphere to point A. Students who claimed that
the net electric field at point B is zero often referred to the
shielding of the inside of the sphere from the charges on the
sphere and charges outside of the sphere �similar to Problems
13 and 15� when they were explicitly asked by the inter-
viewer why the point charge near the sphere does not pro-
duce an electric field at point B. Even when the interviewer
reminded students that the sphere was nonconducting, they
often maintained that the point charge cannot have any influ-
ence inside the sphere. Some students said that they could
not explain exactly why the nonconducting sphere will pro-
duce shielding, but that they remember that the electric field
must somehow cancel in the hollow region for all shapes and
charge distributions. Further prodding showed that due to a
lack of thorough understanding, these students were often
overgeneralizing or confusing two different facts: the sym-
metry argument that shows �using Gauss’s law� that the elec-
tric field for a sphere with a uniform surface charge is zero
everywhere inside regardless of whether the sphere is con-
ducting or insulating, and/or the fact that the electric field
inside a conductor is zero in equilibrium regardless of the
shape of the conductor.

D. The underlying symmetry of a charge distribution

Many students have difficulty realizing that it is the sym-
metry of the charge distribution �and not the symmetry of the
object on which the charges are embedded� that is important

in determining whether Gauss’s law can be applied to calcu-
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late the electric field at a point. For example, students had to
determine when a Gaussian surface would be convenient for
determining the electric field at a point on its surface in Prob-
lems 6, 11, and 22. In Problems 11 and 22 they had to iden-
tify the shape of appropriate Gaussian surfaces that would
make it easy to use Gauss’s law to calculate the electric field
due to an infinite uniform sheet of charge and line of charge,
respectively. In Problem 11 the most common distractor was
�e�, and many students believed that all surfaces will work
because they are all symmetric. However, the calculation for
the sphere is not easy because the area vector and the electric
field make different angles for different infinitesimal areas on
the sphere. In Problem 6 students were asked to evaluate the
validity of three general statements without being given a
specific charge distribution that produced the electric field.
Many students chose �e� and believed that the Gaussian sur-
face must be chosen to take advantage of the symmetry of
the object enclosed, regardless of how the charges are dis-
tributed on that object.

The idea of whether the symmetry of the charge distribu-
tion or the symmetry of the object on which charges are
distributed is important for being able to determine the elec-
tric field using Gauss’s law is also explored in Problems 10
and 14–16. In Problem 10 Gauss’s law can readily be used to
determine the electric field in cases �i� and �iii� because of
the spherical symmetry of the charge distribution on nonpo-
larizable objects but not in case �ii�. In Problems 14–16 stu-
dents were presented with an insulating sphere on which
there are six point charges distributed in a way that the ad-
jacent charges are equidistant. Although the charges are on a
spherical object, the charge distribution does not have spheri-
cal symmetry. Interviews and written responses suggest that
many students incorrectly believed that a spherical symmetry
exists in this case for exploiting Gauss’s law to calculate the
electric field readily. The most common difficulty with Prob-
lem 14 was assuming that the magnitude of the electric field
in experiment 1 would be the same at the three points shown.
In interviews and free-response questions, some students ex-
plained this response by claiming that because the six point
charges and the three points are symmetrically situated, the
field magnitude must be the same at the three points; others
explained their response by claiming that for a point outside,
the six point charges on the sphere can be thought to be point
charges at the center of the sphere. Problem 16 is one of the
most difficult questions on the test. It was easy for most
students to rule out �i�, but it was difficult for them to evalu-
ate the validity of �ii� and �iii� because of the difficulty of
recognizing the underlying symmetry of the charge distribu-
tion.

Problems 17 and 22 also probe the extent to which stu-
dents can discern the underlying symmetry of the charge
distribution. In Problem 17 the last three distractors were
popular and students often believed that we can use Gauss’s
law to find the electric field at a point outside due to a cube
or finite cylinder with uniform surface charge. In the inter-
views students sometime recalled using Gauss’s law for
these surfaces. More prodding showed that they were either
confusing the fact that those surfaces can be used as Gauss-
ian surfaces for appropriate charge distributions or the fact
that for an infinite cylinder �but not a finite cylinder� it is
possible to exploit Gauss’s law to find the electric field. It
appears that many students have not thought carefully about
the principle of superposition and its implication for the elec-

tric field due to a charge distribution and were applying
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memorized knowledge whose applicability was forgotten. In
Problem 22 students had to choose the Gaussian surfaces that
would help them determine the electric field at point P
readily due to the infinite line of charge. All of the alternative
choices were selected with an almost uniform frequency.
Students were often unsure about the symmetry concepts rel-
evant for making appropriate decisions and those who chose
option �c� were often quite confident that the magnitude of
the electric field due to the infinite line must be the same at
every point on the cube as well.

E. Electric field and electric flux

Problems 7, 8, and 9 are related to electric flux and the
distinction between the electric field and flux. The most com-
mon distractor in Problem 8 was �d�. Some students were
quite assertive in their interview and incorrectly claimed that
if the magnitude of the electric flux through one closed sur-
face is smaller than another, the magnitude of the electric
field at points on the first surface must be smaller too. All the
distractors were popular for Problem 9. Interviews suggest
that students who chose �c� often believed that although the
net charge enclosed is the same for surfaces A and B, the
electric flux through surface A must be larger because it is
closer to the positive charge at the center. Interviews also
suggest that students who selected option �d� often believed
that although the net charge enclosed is the same for surfaces
A and B, the electric flux through surface B must be larger
because it has a larger area.

Similar difficulty in differentiating and relating the electric
field and electric flux was manifested in response to Prob-
lems 12, 18, 21, 22, and 23. The most common difficulty
with Problem 12 was assuming that both electric flux and
electric field can be determined using Gauss’s law; 30% of
the students chose option �c�. Interviews suggest that stu-
dents were often confident about their choice of �c� because
the surface area of the Gaussian sphere was given and they
believed that �= �E �A is always true �instead of �
= �E ·dA�. Problem 18 is more abstract than most other
questions in which a specific physical situation is explicitly
given. In this question students had to evaluate the validity of
three statements and the main difficulty was not being clear
about the relation and distinction between the electric field
and electric flux. The most common difficulty with Problem
19 was assuming that the electric field is zero at point B on
the side surface of the cube, although the problem statement
explicitly mentions that the cube is in a uniform electric field
of 20 N/C. In interviews and free-response questions, some
students explicitly claimed that the area vector of the side
surface is perpendicular to the direction of the electric field
lines. Therefore, the electric field must be zero at point B.
This kind of confusion between the electric field at a point
and the contribution to the electric flux from a certain area
was found in other questions as well.

Response to Problems 21 and 22 suggest that many stu-
dents are not comfortable with the statement of Gauss’s law
that relates the net flux through a closed surface to the net
charge enclosed. They have difficulty differentiating between
the electric flux through a closed surface and the electric field
at a point on the surface. For example, in Problem 21 many
students chose �i� �or �i� and �iii�� and claimed in the inter-
views and free-response questions that only those surfaces
can be used to determine the net electric flux through them

because the other surfaces did not have the correct symmetry.
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The most common distractor in Problem 23 was �a�, which
was chosen by 35% of the students. These students believed
that the net charge enclosed in a region is largest if the num-
ber of field lines penetrating the region is greatest. They did
not pay attention to the direction of the electric field lines
which is crucial for determining the net flux through a closed
surface and hence the net charge enclosed using Gauss’s law.

F. Other difficulties

Students were sometimes unsure about the distinction be-
tween open and closed surfaces and that Gauss’s law is only
applicable to closed surfaces. Problems 5, 21, and 22 at least
partly assess whether students understand this distinction.
Some students incorrectly believed that Gauss’s law applies
to any symmetrical surface even if it is not closed. For ex-
ample, in response to Problem 21, these students claimed
that the electric flux � due to an infinitely long line of charge
�with uniform linear charge density �� is �L /�0 even for the
two-dimensional square sheet.

In response to Problem 24 many students selected some of
the statements as correct but only 29% identified that all
three statements are correct. Many had difficulty determining
the validity of statement �ii� which can be checked by draw-
ing a Gaussian surface in region A that includes the center
and using Gauss’s law. In the interview a student insisted that
there can be a point charge in region A even if the electric
field is zero. When asked to explain, the student drew a posi-
tive point charge with the electric field lines radially outward
and said: “Well¼the field due to a point charge will cancel
out because it points in all directions.” It was clear from the
explanation that the student was confused about the electric
field line representation.

G. Performance of upper-level undergraduates

We also administered the 25-item multiple-choice test as a
pre- and post-test to students enrolled in a sophomore-junior
level E&M course in which vector calculus was used exten-
sively; 33 students took the pretest and 28 students took the
post-test. Tables III and IV show the percentage of students

Table III. Percentage of students in the upper-level undergraduate E&M c
�before instruction in the upper-level course�. The correct response for each

Q 1 2 3 4 5 6 7 8 9 10 11 12

�a� 42 9 15 3 30 0 9 0 9 24 3 43
�b� 49 15 61 36 0 3 18 52 67 0 15 18
�c� 6 52 9 9 0 3 64 12 15 21 24 33
�d� 3 21 15 18 0 82 0 24 6 45 18 3
�e� 0 3 0 33 70 12 9 12 3 9 39 3

Table IV. Percentage of students in the upper-level undergraduate E&M cour
�after instruction in the upper-level course�. The correct response for each q

Q 1 2 3 4 5 6 7 8 9 10 11 12

�a� 53 11 11 4 32 0 11 11 4 21 0 53
�b� 39 29 61 46 0 11 11 32 68 4 4 11
�c� 0 57 11 7 0 4 68 7 18 11 68 25
�d� 4 0 14 4 0 82 11 36 7 50 0 7
�e� 4 4 4 39 68 4 0 14 4 14 28 4
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who made the various choices on various questions on the
pretest and post-test, respectively. The average pre- and post-
test scores are 44 and 49%, respectively; this difference is
not statistically significant. The fact that the upper-level un-
dergraduates did not perform better than the introductory stu-
dents �compare Tables I and IV� suggests that the higher
mathematical sophistication of the course with vector calcu-
lus did not help students acquire a better conceptual under-
standing of the superposition principle, symmetry, and
Gauss’s law.

H. Performance of graduate students

To calibrate the test we also administered it �over two
consecutive years� to a total of 33 physics graduate students
who were enrolled in a seminar course for teaching assistants
�TAs�. Most of them were first year graduate students who
were simultaneously enrolled in the first semester of the
graduate E&M course. Students were told ahead of time that
they would be taking a test related to electrostatics concepts.
They were asked to take the test seriously, but it did not
count for their course grade. The average test score for the
graduate students was approximately 75% with the reliability
coefficient �	0.8.16 The better performance of graduate stu-
dents compared to the undergraduates is statistically signifi-
cant. The minimum score obtained by a graduate student �an
American student� was 28% and the maximum score ob-
tained by two Chinese graduate students was 100%.

Table V shows the percentage of graduate students who
selected the various choices on the test. Many of the concep-
tual difficulties that the graduate students displayed are simi-
lar to those of the introductory students. Problems 13 and 17
were the only ones on which graduate students performed
less than 50% with misconceptions similar to those of the
undergraduates. The PBD for Problems 13 and 17 were 0.5
and 0.6, respectively, which shows that the graduate students
who performed well overall on the test did well on those
questions. Comparison of Tables I and V shows that on an
average, the graduate students outperformed the introductory
students on all other questions except Problem 2, but this

�total number of students 33� who selected choices �a�–�e� on the pretest
tion is italicized. The average score was 44%.

3 14 15 16 17 18 19 20 21 22 23 24 25

9 9 49 9 0 58 0 15 15 27 42 12 27
5 24 3 21 27 3 6 18 13 15 3 27 30
5 9 36 27 30 9 24 9 15 12 42 30 21

55 3 33 6 18 64 55 36 30 3 12 21
8 3 9 9 36 12 6 3 21 15 9 18 0

tal number of students 28� who selected the choices �a�–�e� on the post-test
on is italicized. The average score was 49%.

3 14 15 16 17 18 19 20 21 22 23 24 25

5 0 64 4 0 39 0 7 7 50 36 4 28
32 4 7 7 7 4 21 4 4 4 7 32
4 25 7 43 32 36 14 32 18 53 18 0
64 7 46 11 11 53 53 53 14 0 11 36

4 0 0 36 39 11 7 4 4 14 7 61 4
ourse
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difference is not statistically significant. The PBD for this
question is 0.5, so the graduate students who performed well
overall on the test did well on this question.

VI. SUMMARY

We find that the undergraduate students, including those in
the upper-level course with higher mathematical sophistica-
tion, have common difficulties related to the superposition
principle, symmetry concepts, and Gauss’s law. The knowl-
edge deficiencies can be broadly divided into three levels
with increasing difficulty: lack of knowledge related to a
particular concept, knowledge that is retrieved from memory
but cannot be interpreted correctly, and knowledge that is
retrieved and interpreted at the basic level but cannot be used
to draw inferences in specific situations. Our investigation
shows evidence that students’ difficulties were due to knowl-
edge deficiencies across all three levels. Because many ques-
tions required students to predict the outcomes for specific
setups, they necessitated a transition from a mathematical
representation to a concrete case. Therefore, deficiencies at
the latter two levels were frequently observed. Instructional
strategies that focus on improving student understanding of
these concepts should take into account these difficulties.
The multiple-choice test that we developed can help assess
the effectiveness of strategies to improve student understand-
ing of these concepts. We are developing and evaluating tu-
torials to help students with these concepts.
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APPENDIX A: SUMMARY OF THE
MULTIPLE-CHOICE TEST DESIGN

During the design of the multiple-choice test, we paid par-
ticular attention to the issues of reliability and validity.16 Re-
liability refers to the relative degree of consistency between
testing if the test procedures are repeated for an individual or
group. Validity refers to the appropriateness of the test score
interpretation. The test design began with the development of
a test blueprint that provided a comprehensive framework for
planning decisions about the desired test attributes. The de-
gree of specificity in the test plan was useful for creating

Table V. Percentage of physics graduate students enrolled in a course for tea
Problems �1�–�25� on the test. The correct response for each question has b

Q 1 2 3 4 5 6 7 8 9 10 11 12

�a� 73 3 12 0 12 3 3 6 0 12 0 79
�b� 27 9 79 18 0 3 3 88 91 0 3 0
�c� 0 64 9 0 0 6 91 0 0 6 94 12
�d� 0 3 0 9 0 76 0 6 6 70 0 6
�e� 0 21 0 73 88 12 3 0 3 12 3 3
questions. We tabulated the scope and extent of the content

929 Am. J. Phys., Vol. 74, No. 10, October 2006
covered and the level of cognitive complexity desired. We
used previous free-response and multiple-choice questions
administered to students as a guide and identified the desired
performance and a description of conditions/contexts under
which the performance was expected to occur.

We classified the cognitive complexity using a simplified
version of Bloom’s taxonomy:17 specification of knowledge,
interpretation of knowledge, and application of knowledge in
different situations. The performance targets and table of
content and cognitive complexity were shown to five physics
faculty members at the University of Pittsburgh for review.
Modifications were made to the weights assigned to various
concepts and to the performance targets based on faculty
feedback. The performance targets were converted to ap-
proximately 30 free-response questions. These questions re-
quired students to provide reasoning for their responses. The
free-response questions were administered �in groups of 10–
20� to students in the calculus-based courses. Often, some
students in a class were given one set of questions and others
were given another set in order to sample student responses
on most of the questions. We also tape-recorded interviews
with five introductory student volunteers using a think-aloud
protocol.5 Thirty multiple-choice questions were then de-
signed using the most frequent incorrect student responses
for the free-response questions and interviews as a guide for
making the distractor choices. Choosing the four distractors
to conform to the common difficulties is essential for in-
creasing the discriminating properties of the questions. Five
physics faculty members were asked to review the multiple-
choice questions and comment on their appropriateness and
relevance for calculus-based introductory physics and to de-
tect ambiguity in question wording. A review form was de-
veloped to aid the faculty in reviewing the questions. The
faculty also classified each question on a scale from very
appropriate to least appropriate. Further modifications were
made based on their recommendations. Then, a multiple-
choice test was assembled using 25 questions that closely
matched the initial table delineating the scope of the content
and cognitive complexity. The same faculty members who
earlier reviewed the questions were shown the test several
times and modifications were made based on the feedback
during the iterations.

The 50 min multiple-choice test was administered after
instruction in Gauss’s law to students in the calculus-based
courses at Pittsburgh. Five student volunteers who had not
taken the test earlier were interviewed individually and asked
to respond to the test questions using the think-aloud proto-
col. These interviews provided us with an opportunity to
clarify issues in depth. The reliability index � for the test
was approximately 0.8 which is good by the standards of
test-design.16 Item analysis of student responses was per-

assistants �total number of students 33� who selected the choices �a�–�e� on
talicized. The average score was 75%.

3 14 15 16 17 18 19 20 21 22 23 24 25

5 0 36 6 0 73 3 3 6 73 18 0 55
12 3 6 45 0 0 3 3 3 0 6 9
3 61 9 40 24 0 0 0 12 82 9 12
85 0 27 0 0 94 94 88 12 0 30 24

6 0 0 52 15 3 3 0 3 0 0 55 0
ching
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formed to judge whether each question functioned as
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expected.16 In addition to the calculation of difficulty and
discrimination of questions,16 item analysis included creating
a table to count the number of students selecting each dis-
tractor in the upper and lower quartiles. Item analysis was
very useful to determine whether individual questions and
distractors functioned as expected. Based upon the item
analysis and interviews, the test questions were modified fur-
ther before being administered to the students.

APPENDIX B: THE MULTIPLE-CHOICE TEST

Instructions: Select one of the five choices �a�–�e� for
each of the 25 problems. In all questions all physical objects
are insulating �nonconducting�; all insulators are nonpolariz-
able; �0 is the permittivity of free space; Gauss’s law:

��E� � �dA� �cos �=Qenc/�0; and the sign convention is that for
all closed surfaces, consider outward flux as positive.

Problem 1. Choose all of the following physical vari-
ables that are vectors:

�i� Electric field
�ii� Electric flux
�iii� Electric charge

�a� �i� only.
�b� �i� and �ii� only.
�c� �i� and �iii� only.
�d� �ii� and �iii� only.
�e� �i�, �ii�, and �iii�.

Problem 2. Three identical point charges +Q are ar-
ranged in a line as shown in Fig. 1. Points A,
B, and C are along a parallel line. You do not
know the lengths L and d. The three charges
produce an electric field. Without knowledge
of L and d, what can you infer about the
electric field at points A, B, and C?

�a� Both the magnitude and direction of the
field are the same at points A, B, and C.

�b� The magnitude of the field is the same at
points A, B, and C but the directions are
different.

Fig. 1. Charge distribution for Problem 2.
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�c� The exact direction of the field can be
predicted only at point C.

�d� The exact direction of the field can be
predicted only at points A and C.

�e� The exact direction of the field cannot be
predicted at any of the three points.

Problem 3. Consider a horizontal square sheet, length L
on each side, on which positive charge is
uniformly distributed with charge per unit
area �surface charge density � C/m2� �see
Fig. 2�. You measure the electric field at two
points, each at a height h=L /2 above the
sheet: point C is directly above the center of
the sheet and point B is off center.

Which one of the following statements is true
about the field due to the finite sheet of
charge, observed at points B and C?
�a� The fields at points B and C have the

same magnitude and same direction.
�b� The fields at points B and C have differ-

ent magnitudes and different directions.
�c� The fields at points B and C have the

same magnitude but different directions.
�d� The fields at points B and C have differ-

ent magnitudes but the same direction.
�e� We cannot compare the fields at points B

and C without knowing the numerical
value of �.

Problem 4. You perform two experiments �E1 and E2� in
which you distribute charge +3Q differently
on an equilateral triangle made with thin in-
sulating rods. E1: You put identical charges,
+Q each, in three localized blobs on the ver-
tices of the triangle. E2: You distribute
charge +3Q uniformly on the triangle. The
dashed triangle in Fig. 3 shows an imaginary
equilateral triangle concentric with the insu-
lating triangle. Which one of the following
statements is true about the electric field
magnitude at points on the dashed imaginary
triangle due to the +3Q charge?

Fig. 2. A horizontal square sheet of charge for Problem 3.
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�a� It is the same everywhere on the dashed
triangle only in experiment E1.

�b� It is the same everywhere on the dashed
triangle only in experiment E2.

�c� In each experiment, it is the same every-
where on the dashed triangle, but the
magnitudes differ in the two experiments.

�d� In each experiment, it is the same every-
where on the dashed triangle, and the
magnitudes are equal in the two experi-
ments.

�e� Both in experiment E1 and in experiment
E2 it varies from point to point on the
dashed triangle.

Problem 5. For Gauss’s law to be valid, the Gaussian
surface used must be a
�a� Highly symmetrical surface.
�b� Spherical surface.
�c� Cylindrical surface.
�d� Open surface.
�e� Closed surface.

Problem 6. Choose all of the following statements that
must be true about a Gaussian surface in or-
der for Gauss’s law to be convenient for cal-
culating the electric field at a point on the
surface:

�i� The electric field direction should be
easy to predict at every point on the sur-
face.

�ii� The Gaussian surface must be chosen
to take advantage of the symmetry of the
charge distribution.
�iii� The Gaussian surface must be chosen
to take advantage of the symmetry of the
object enclosed inside it regardless of how
the charges are distributed on that object.

�a� �i� only.
�b� �ii� only.
�c� �iii� only.
�d� �i� and �ii� only.
�e� �i� and �iii� only.

Problem 7. In Fig. 4, a point charge +Q1 is at the center
of an imaginary spherical surface and another
point charge +Q2 is outside it. Point P is on
the surface of the sphere. Let �S be the net

electric flux through the sphere and E� P be the
electric field at point P on the sphere. Which
one of the following statements is true?

Fig. 3. Charge distribution for Problem 4.
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�a� Both charges +Q1 and +Q2 make nonzero
contributions to �S but only the charge

+Q1 makes a nonzero contribution to E� P.
�b� Both charges +Q1 and +Q2 make nonzero

contributions to �S but only the charge

+Q2 makes a nonzero contribution to E� P.
�c� Only the charge +Q1makes a nonzero

contribution to �S but both charges +Q1

and +Q2 make nonzero contributions to

E� P.
�d� Charge +Q1 makes no contribution to �S

or E� P.
�e� Charge +Q2 makes no contribution to �S

or E� P.

Problem 8. Your friend measures the electric flux through
three closed surfaces �1�, �2�, and �3� to be 1,
2, and −3 Nm2/C, respectively. Choose all of
the following statements that can be inferred
from these measurements:

�i� The area of surface �3� is largest.
�ii� The magnitude of the net charge en-
closed inside surface �3� is largest.
�iii� The electric field everywhere on sur-
face �1� is weaker than on surface �2�.

�a� �i� only.
�b� �ii� only.
�c� �i� and �ii� only.
�d� �ii� and �iii� only.
�e� �i�, �ii�, and �iii�.

Problem 9. Shown in Fig. 5 are three concentric spheri-
cal Gaussian surfaces A, B, and C with a
positive point charge+Q at their center. A
second, but negative point charge −Q is en-
closed only by surface C.

Fig. 4. Charge distribution for Problem 7.
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0.
Which is a correct statement about the mag-
nitudes of the electric flux �S through the
three surfaces?
�a� �A=�B=�C.
�b� �A=�B��C.
�c� �A��B��C.
�d� �B��A��C.
�e� None of the above.

Problem 10. Choose all of the following cases for which
the electric field at any point outside the ob-
ject can be calculated easily from Gauss’s
law. �In each case, assume that the insulators
are nonpolarizable and no other charges are
present anywhere.� See Fig. 6.

�i� Insulating sphere with a uniform charge
throughout its volume.
�ii� Insulating dumbbell with a uniform
charge throughout its volume.
�iii� Insulating dumbbell with only one of
the two spherical balls at the end uni-
formly charged throughout its volume.

�a� �i� only.
�b� �ii� only.
�c� �i� and �ii� only.
�d� �i� and �iii� only.
�e� �i�, �ii�, and �iii�.

Problem 11. Consider three possible Gaussian surfaces �a
sphere, a cube, and a cylinder� which extend
half above and half below an infinite horizon-
tal sheet of uniform charge density as shown
in Fig. 7.

Fig. 5. Gaussian surfaces for Problem 9.

Fig. 6. Diagram for Problem 10.
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Point A is located at the top center of each
Gaussian surface. For which of the Gaussian
surfaces will Gauss’s law help us to easily
calculate the electric field at point A due to
the sheet of charge?
�a� Only the sphere is symmetric enough.
�b� Only the cylinder, because the side walls

have zero flux and it has circular symme-
try.

�c� Only the cylinder and the cube, because
any shape with the side walls perpendicu-
lar to the sheet and end caps parallel to
the sheet will work.

�d� Only the sphere and the cylinder, because
they have circular cross sections.

�e� All surfaces will work since they are
symmetric.

Problem 12. A thin insulating rod of length 1 m, with
charge Q= +100 nC �nanocoulombs� uni-
formly distributed over it, is symmetrically
situated inside a spherical Gaussian surface
with a total surface area of A=15 m2 �see
Fig. 8�. No other charges are present any-
where.

We can use Gauss’s law to conclude that:
�i� The magnitude of the net electric flux
through the Gaussian surface is �S=Q /�
�ii� The electric field magnitude at any
point on the surface is

�E� � =�S /A=Q / ��0A�.
Which of the above statements are true?

Fig. 7. Diagram for Problem 11.

Fig. 8. Diagram for Problem 12.
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�a� �i� only.
�b� �ii� only.
�c� Both �i� and �ii�.
�d� Neither �i� nor �ii�.
�e� Not enough information.

Problem 13. The surface of a thin-walled cubic insulatin
�nonconducting� box is given a uniformly
distributed positive surface charge. Which
one of the following can be inferred about
the electric field everywhere inside the insu
lating box due to this surface charge using
Gauss’s law?
�a� Its magnitude everywhere inside must b

zero.
�b� Its magnitude everywhere inside must b

nonzero but uniform �the same�.
�c� Its direction everywhere inside must be

radially outward from the center of the
box.

�d� Its direction everywhere inside must be
perpendicular to one of the sides.

�e� None of the above.

Setup for Problems 14 and 15
You perform two experiments �see Fig. 9� in which you

distribute charge +6Q differently on the surface of an iso-
lated hollow insulating �nonconducting� sphere:
Experiment 1: You put identical charges, +Q each, on the
spherical surface in six localized blobs �you can consider
them point charges� such that the adjacent blobs are equidis-
tant from each other. Experiment 2: You distribute charge
+6Q uniformly on the surface of the sphere.

Problem 14. In experiments 1 and 2, points A, B, and C
are equidistant from the center and lie in the
same equatorial plane of the sphere. In ex-
periment 1, points A and C are straight out
from two of the charges and point B is in
between points A and C as shown. Which
one of the following statements is true about
the electric field magnitudes at points A, B,
and C due to the +6Q surface charge?
�a� In each experiment, the field magnitude is

the same at points A, B, and C, but the
magnitudes differ in the two experiments.

Fig. 9. Diagram for Problems 14 and 15.
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�b� In each experiment, the field magnitude
is the same at points A, B, and C, and
the magnitudes are equal in the two ex-
periments.

�c� In experiment 1, the field magnitude is
the same at points A, B, and C, but not
in experiment 2.

�d� In experiment 2, the field magnitude is
the same at points A, B, and C, but not
in experiment 1.

�e� None of the above.

Problem 15. Which one of the following is a true state-
ment about the electric field magnitude in-
side the hollow insulating sphere due to the
+6Q surface charge �see Fig. 9�?
�a� It is zero everywhere inside the sphere in

both experiments.
�b� It is nonzero everywhere inside the

sphere in both experiments.
�c� In experiment 1, it has a magnitude that

varies from point to point inside the
sphere, but it is zero everywhere inside
the sphere in experiment 2.

�d� In experiment 1, it has the same nonzero
magnitude everywhere inside the sphere,
but it is zero everywhere inside the
sphere in experiment 2.

�e� None of the above.

Problem 16. Six positive point charges, +Q each, are
placed on an isolated hollow insulating
sphere such that the adjacent point charges
are equidistant �same arrangement as in ex-
periment 1 in Problem 15�. A spherical and a
cubic Gaussian surface concentric with the
insulating sphere are shown in Fig. 10.
Choose all of the following statements that
are true about the electric field due to this
charge distribution:

�i� The electric field magnitude is the sam
everywhere on the cubic Gaussian surfac
because the cube has the same symmetry
as that of the charge distribution.

Fig. 10. Diagram for Problem 16.
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�ii� The electric field magnitude is the
same everywhere on the spherical Gauss
ian surface because the sphere has the
same symmetry as the insulating sphere.
�iii� The electric field is radially outward
�straight out from the center� everywhere
on the spherical Gaussian surface.

�a� �i� only.
�b� �ii� only.
�c� �iii� only.
�d� �ii� and �iii� only.
�e� None of the above.

Problem 17. Shown in Fig. 11 are three thin-walled insu
lating objects with a net charge+Q uniforml
distributed on their surfaces: a cube, a sphe
and an open ended cylinder of length L �no
caps� and diameter L. The objects are distan
from each other so that each may be consid
ered electrically isolated.

We can easily use Gauss’s law to find the
electric field due to the uniform surface
charge at a point outside due to:
�a� The cube only.
�b� The sphere only.
�c� The sphere and cylinder only.
�d� The sphere and cube only.
�e� All three objects.

Problem 18. Choose all of the following statements that
are true �Note: This question does not refer
to a particular charge distribution so a state-
ment is true only if there are no exceptions�:

�i� If the electric field at every point on a
Gaussian surface is zero, the net electric
flux through the surface must be zero.
�ii� If there is no charge enclosed inside a
Gaussian surface, the electric field every-
where on the surface must be zero.
�iii� If the net electric flux through a
Gaussian surface is zero, the electric field
everywhere on the surface must be zero.

�a� �i� only.
�b� �ii� only.
�c� �i� and �ii� only.
�d� �i� and �iii� only.

Fig. 11. Diagram for Problem 17.
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�e� �ii� and �iii� only.

Setup for Problems 19 and 20
A cubic Gaussian surface with 1 m on a side is oriented

with two horizontal and four vertical faces, as shown in Fig.
12. It is in a uniform electric field of 20 N/C which is di-

rected vertically upward. Point A is on the top surface and
point B on a side surface of the cubic Gaussian surface.

Problem 19. Which one of the following statements is true
about the electric field at points A and B?
�a� The field is zero at both points A and B.
�b� The field is zero at point A but not at

point B.
�c� The field is zero at point B but not at

point A.
�d� The field is nonzero at both points A and

B and its direction is the same at the two
points.

�e� The field is nonzero at both points A and
B but its direction is different at the two
points.

Problem 20. Choose all of the following statements that
are true about the electric flux.

�i� The net flux through the whole cubic
surface is zero.
�ii� The magnitude of the flux through the
top face of the cubic surface is
20 N m2/C.
�iii� The magnitude of the net flux through
the whole cubic surface is 20 N m2/C.

�a� �i� only.
�b� �ii� only.
�c� �iii� only.
�d� �i� and �ii� only.
�e� �ii� and �iii� only.

Setup for Problems 21 and 22
Shown in Fig. 13 are four imaginary surfaces coaxial with

an isolated infinitely long line of charge �with uniform linear

Fig. 12. Diagram for Problems 19 and 20.
charge density � C/m�:
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�i� A closed cylinder of length L.
�ii� A sphere of diameter L.
�iii� A closed cubic box with side L.
�iv� A two-dimensional square sheet with side L. The
plane of the sheet is perpendicular to the line of charge.

Problem 21. Choose all of the above surfaces through
which the net electric flux is �S=�L /�0:
�a� �i� only.
�b� �i� and �ii� only.
�c� �i� and �iii� only.
�d� �i�, �ii�, and �iii� only.
�e� �i�, �ii�, �iii�, and �iv�.

Problem 22. Choose all of the above surfaces which can
be used as Gaussian surfaces to easily find
the electric field magnitude �due to the infi-
nite line of charge� at a point P shown on the
surface using Gauss’s law:
�a� �i� only.
�b� �i� and �ii� only.
�c� �i� and �iii� only.
�d� �i�, �ii�, and �iii� only.
�e� �i�, �ii�, �iii�, and �iv�.

Problem 23. The diagram in Fig. 14 shows the electric
field lines in a region. Sadly, you do not
know the field inside the three regions �i�,
�ii�, and �iii�. This cross-sectional drawing is
qualitatively correct. Which region �or re-
gions� carries a net charge of the greatest
magnitude?

�a� �i� only.
�b� �ii� only.
�c� �iii� only.
�d� �ii� and �iii� which have equal net charg
�e� �i�, �ii�, and �iii� which have equal net

charge.

Fig. 13. Diagram for Problems 21 and 22.

Fig. 14. Diagram for Problem 23.
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Problem 24. Shown in Fig. 15 are four regions A, B, C,
and D �separated by spherical surfaces�. Th
electric field is zero in regions A �innermos
and D �outermost�. The electric field in re-
gions B and C is radially outward and in-
ward, respectively.

Choose all of the following statements that
must be true:

�i� The combined net charge enclosed in
all the regions shown must be zero.
�ii� There cannot be a point charge at the
center of region A.
�iii� There must be a negative surface
charge between regions B and C.

�a� �i� only.
�b� �i� and �ii� only.
�c� �i� and �iii� only.
�d� �ii� and �iii� only.
�e� �i�, �ii�, and �iii�.

Problem 25. In Fig. 16 a point charge +Q is near a thin
hollow insulating �nonconducting� sphere of
radius L that has an equal amount of charge
+Q uniformly distributed on its surface. No
other charges are around.

Fig. 15. Diagram for Problem 24.
Fig. 16. Diagram for Problem 25.

935Chandralekha Singh



Which one of the following is a true state-
ment about the net electric field �due to the
point charge and the surface charge on the
hollow insulating sphere� at points A �outside
the sphere at a distance 2L from the center�
and B �inside the sphere at a distance L /2
from the center�?
�a� The electric field is zero at point A but is

nonzero at point B.
�b� The electric field is nonzero at point A

but is zero at point B.
�c� The electric field is nonzero at both points

A and B.
�d� The electric field is zero at both points A

and B.
�e� It is impossible to answer this question

without knowing the numerical value of
Q.
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