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point mutations on the performance of digital organisms. In all cases, the

®tness (replication rate) of each mutant was calculated in the same

environment in which its simple or complex parent evolved, and the mutant's

®tness is expressed relative to the parent. The ®rst tool makes every possible

one-step point mutant for a particular parent. The default set includes 28

different instructions; given a parent of genome length 80, for example, there

are 80 3 �28 2 1� � 2;160 different one-step point mutants. The mean ®tness

of these mutants permits exact calculation of a in the decay test. The second

tool produces a random sample of progeny that differ from their parent by two

or more point mutations. For each parent, we generated between 105 and 107

progeny with two mutations, three mutations and so on, up to ten mutations.

The third tool produces and analyses pairs of point mutations alone and in

combination; for each two-step mutant, we have both corresponding one-step

mutants. Having the single mutants allows us to compare a double mutant's

actual ®tness with the exact value expected under the hypothesis that the

mutations interact in a multiplicative manner. We ran the pair test on 104 and

105 mutational pairs for each complex and simple organism, respectively.

Statistical methods. We performed the Wilcoxon signed-ranks test on the

difference scores for all comparisons between complex and simple organisms29.

This test re¯ects the evolutionary relationship between pairs of organisms; it is

also non-parametric and thus insensitive to deviations from a normal dis-

tribution. To estimate b in the decay tests, we minimized the sum of squared

deviations around the log-transformed mean ®tness values. We excluded

samples with fewer than 100 viable mutants, in which case log mean ®tness

was poorly estimated. By increasing sample size to 108, we can obtain additional

viable mutants; the exclusion of some values because of insuf®cient sampling

appears to have no systematic effect on estimation of b.
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Vascular plants vary in size by about twelve orders of magnitude,
and a single individual sequoia spans nearly this entire range as it
grows from a seedling to a mature tree. Size in¯uences nearly all of
the structural, functional and ecological characteristics of
organisms1,2. Here we present an integrated model for the hydro-
dynamics, biomechanics and branching geometry of plants, based
on the application of a general theory of resource distribution
through hierarchical branching networks3 to the case of vascular
plants. The model successfully predicts a fractal-like architecture
and many known scaling laws, both between and within individ-
ual plants, including allometric exponents which are simple
multiples of 1/4. We show that conducting tubes must taper

Box 1 Notation and geometry

The model can be described as a continuously branching hierarchical

network running from the trunk (level 0) to the petioles (level N), with an

arbitrary level denoted by k (Fig. 1). The architecture is characterized by

three parameters (a, Åa and n), which relate daughter to parent branches:

ratios of branch radii, bk [ rk�1=rk [ n2 a=2, tube radii, bÅk [ ak�1=ak [ n2 Åa=2,

and branch lengths, gk [ lk�1=lk and also the branching ratio, n, the number

of daughter branches derived from a parent branch. Because the total

number of tubes is preserved at each branching, n � nk�1=nk, where nk is

the numberof tubes in a kth-level branch; n is taken to be independent of k

and typically equals 2. Clearly, nk � nNnN 2 k , where N is the total numberof

branching generations from trunk to petiole, and nN is the number of tubes

in a petiole, which is taken to be an invariant. Now, for a volume-®lling

network, gk � n2 1=3, independent of k (ref. 3). If tube tapering is uniform, Åa

is also independent of k, and it follows that

rk

rN

� n�N 2 k�a=2;
ak

aN

�
rk

rN

� �Åa=a

;
lk
lN

�
rk

rN

� �2=3a

�1�

Various scaling laws can now be derived. For example, the number

of terminal branches or leaves distal to the kth branch, nL
k � nk=nN �

nN 2 k � �rk=rN�
2=a , and the area of conductive tissue (CT), ACT

k �

nkpa2
k � ACT

N �rk=rN�
2�1� Åa�=a , where ACT

N � nNpa2
N is the area of conductive

tissue in a petiole. Thus, the area of conductive tissue relative to the

total (tot) branch cross-sectional area (Atot
k � pr2

k) is given by

fk [
ACT

k

Atot
k

� nN

a2
N

r2
N

� �
rk

rN

� �2�1� Åa 2 a�=a

�2�

The total cross-sectional area scales as nAtot
k�1=A

tot
k � nb2

k � n1 2 a. When

a � 1 this reduces to unity and the branching is area-preserving; that is,

the cross-sectional area of the daughter branches is equal to that of the

parent: nAtot
k�1 � Atot

k . A simple example of this, considered in ref. 3, is the

pipe model6, in which all tubes have the same constant diameter ( Åa � 0),

are tightly bundled and have no non-conducting tissue. Here we consider

the more realistic case in which tubes are loosely packed in sapwood and

there may be non-conducting heartwood providingadditional mechanical

stability.



© 1999 Macmillan Magazines Ltd

letters to nature

NATURE | VOL 400 | 12 AUGUST 1999 | www.nature.com 665

and, consequently, that the resistance and ¯uid ¯ow per tube are
independent of the total path length and plant size. This resolves
the problem of resistance increasing with length, thereby allowing
plants to evolve vertical architectures and explaining why the
maximum height of trees is about 100 m. It also explains why the
energy use of plants in ecosystems is size independent.

Most size-related variation can be characterized by allometric
scaling laws of the form Y � Y 0Mb, where Y is the variable of
interest, Y0 is a normalization constant, M is body mass and b is the
scaling exponent. Although an enormous amount of anatomical
and physiological data exist for plants2,4±17, no single model has
explained these diverse phenomena. We have modelled the trans-
port of ¯uid from the trunk to the petioles through the xylem vessels
of angiosperms (¯owering plants). The model is based on a few
general principles: (1) the branching network is volume ®lling; (2)
the leaf and petiole size are invariant; (3) biomechanical constraints
are uniform; and (4) energy dissipated in ¯uid ¯ow is minimized.
The model should also apply, with only minor modi®cation, to
transport through tracheids, phloem and roots.

The network is assumed to be composed of identical tubes of
equal length running continuously in parallel from trunk to petiole
(®les of vessels connected in series). Tube diameter is taken to be
constant within a branch segment but is allowed to vary between
segments, thereby incorporating possible tapering. For simplicity,
tapering within segments is ignored, as are the thickness and
structure of the tube walls and connections between tubes. The
notation and geometry of the model are described in Box 1, where it
is shown that scaling relations can be parametrized in terms of just
two exponents, a and aÅ , which determine how radii of branches and
tubes scale within a plant. Box 2 shows how aÅ , and consequently the
degree of tapering, are determined from hydrodynamic considera-
tions, whereas a is determined from mechanical constraints.

The design of trunks and branches to resist buckling leads to
some optimal relationship between their length and radius: lk ~ ra

k .
Comparison with equation (1) in Box 1 gives a � 2=�3a�. If this
holds uniformly for all branches, then a is constant, independent of
k, in which case a and bk are also constant. When coupled with the
volume-®lling constraint, gk � n 2 1=3, this proves that the branching

architecture is a self-similar fractal18,19. Analyses based on solutions
to the bending moment equations for beams give a � 2=3 (refs 2,
20). This is most important for the trunk and large branches7,15,20.
Assuming that it holds for all branches (all k) leads to a� 1, which is
the condition for area-preserving branching3. Unlike a previous
report3, this derivation does not assume the pipe model. The result
a � 1 implies that the leaf area distal to the kth branch AL

k � CLr2
k ,

where CL[ aL=r
2
N is invariant, aL is the average area of a leaf, and rN is

the radius of a petiole. Taking rN < 0:5 mm and aL < 30 cm2 gives
CL < 1:2 3 104. The number of branches of a given size
Nk � nk � nN�rN =rk�

2 ~ r 2 2
k (refs 2, 4, 6, 8, 12). These results are

independent of aÅ .
The linear increase in hydrodynamic resistance with length

implied by the classic Poiseuille formula4 for a uniform tube
would preclude the very existence of tall trees, regardless of any
mechanical constraint; for example, lower branches would be
favoured over branches in the upper canopy where most light is
collected. However, as shown in Box 2, if tubes taper, their total
resistance from trunk to petiole Zi need not increase with their total
length. Indeed, for aÅ . 1=6, Zi is a constant independent of total tube
length and is the same for all plants, regardless of size. This ensures
an equal supply to all leaves, both at different heights within a plant,
and in plants of different sizes growing in similar environments. To
avoid excess tapering, aÅ should be the minimum possible value
consistent with constant Zi, namely 1/6.

Box 3 shows how general scaling relationships for various
physical quantities are derived in terms of a and aÅ . We now consider
some consequences in the idealized case, where a � 1 (the area-
preserving branching condition derived from biomechanical
constraints) and aÅ � 1=6 (derived from minimizing tapering and
hydrodynamic resistance).

ba

k = 0    1    2    3    4...n

Figure 1 Branching structure. a, Topology of a plant branching network. b,

Symbolic representation of branch vascular structure, showing conducting tubes

and non-conducting tissue (black).

Box 2 Hydrodynamics and vessel tapering

The resistance, Zi
k, of a single tube (i) within any branch segment (k) is

givenby thePoiseuille formula4 (Zi
k � 8hlk=a

4
k), where h is the¯uid viscosity.

The total resistance of a tube running from the trunk to a petiole through

successive branch segments is Zi � SN
k�0Z

i
k . Using equation (1), this can

be expressed as

Zi � ^
N

k�0

Zi
k �

1 2 ��n1=3 2 1�lT =lN�
�1 2 6 Åa�

1 2 n�1=3 2 2 Åa�

� �
ZN �3�

where ZN � 8hlN=pa4
N is the resistance of a tube in the petiole, and the total

tube length lT � SN
k�0lk � l0=�1 2 n2 1:=3�. The crucial point is that, when

lT q lN, the behaviour of Zi depends critically on the degree of tapering,

that is, whether Åa is less than, more than, or equal to 1/6. First, consider

Åa , 1=6, which includes the pipe model; then equation (3) gives

Zi ~ �lT =lN�
�1 2 6 Åa� , so resistance increases with path length, lT. However, if

Åa . 1=6, then Zi < ZN=�1 2 n�1=3 2 2 Åa��, which can be shown to be its minimum

value. This has the remarkable property that it is a constant, independent

of total tube length, lT; because ZN is an invariant, Zi is also the same for all

plants, regardlessof size. Taking Åa ! 1=6 to minimize tapering, yet keeping

Zi constant, gives Åa < 1=6 � �2N ln n�2 1. Thus, for large N (tall trees),

Åa < 1=6; for example, with r0 < 25 cm and N < 20, the correction is only

,1/30. For small trees, however, whose height h p e�6 Åa 2 1�2 1
lN=�n

1=3 2 1�<
a few metres, the correction can be large, leading to calculable devia-

tions from results derived using Åa � 1=6. At this precise value, Zi increases

logarithmically with lT, so Åa should implicitly be taken as in®nitesimally

larger than 1/6.

Box 3 Scaling relations and allometry

Scaling relations within an individual plant are easily derived. Here we

present some general formulae expressed in terms of a and aÅ . Because

tubes are in parallel, the resistance of a branch segment is given by

Zk � Zi
k=nk � 8hlk=pnka

4
k and its conductivity by Kk [ lk=Zk � KN�rk=rN�

2�1�2 Åa�=a,

where KN � pnNa4
N=8h is the conductivity of a petiole. Similarly, leaf-

speci®c conductivity (the conductivity per unit leaf area), Lk [ Kk=n
L
kaL �

LN�rk=rN�
4 Åa=a. Alternatively, these canbe expressed asa function of the area

of conducting tissue: Kk ~ �ACT
k ��1�2 Åa�=�1� Åa� and Lk ~ �ACT

k ��2
Åa�=�1� Åa� (refs 8±10).

Allometric relations can be derived by considering the total wood

volume, VW, which, for constant density, is proportional to the total mass,

M. Thus, VW � SN
k�0pnkr2

klk � �gb2�2 NVN=�1 2 ngb2�, where g � n2 1=3,

b � n2 ;a=2 and VN is the volume of a petiole. Consequently, the total

number of terminal branches, or leaves, should scale as

nL
0 � nN ~ M3=�1�3a� . Similarly, from equation (1), lk ~ M�1 2 k=N�=�a�3� and

rk ~ M�1 2 k=N�3a=2�a�3�, so the length and radius of a kth-level branch scale

more slowly with M than thoseof the trunk, which scale as l0 ~ M1=�a�3�, and

r0 ~ M3a=2�a�3�.
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First, the conductivity of a branch segment scales as
Kk=KN ~ �rk=rN�

8=3 ~ �ACT
k �8=7 and its leaf-speci®c conductivity as

Lk=LN ~ �rk=rN �
2=3 ~ �ACT

k �2=7. For a petiole with aN < 10 mm and
nN < 200, its conductivity KN < 7 3 10 2 10 m4 s 2 1 MPa-1. For
comparison, the pipe model, where a � 1 and aÅ � 0, incorrectly
gives Kk ~ r2

k and Lk ~ r0
k .

Second, the total number of terminal branches or leaves scales as
nL

0 � nN ~ r2
0 ~ M3=4. Similarly, the length and radius of the trunk

scale as l0 ~ M1=4 and r0 ~ M3=8, respectively2. The total height of a
tree, h, is equivalent to the length of a tube running from trunk to leaf:
h � lT < l0=�1 2 g�, so h ~ M1=4. The number of branching genera-
tions, N, grows only logarithmically with mass, N ~ ln M, and can be
estimated from N � 2ln�r0=rN�=ln n. For a tree with trunk diameter
50 cm, petiole radius 0.5 mm and n � 2, this gives N < 18. From
equation (1), the tube radius scales as ak=aN � �rk=rN�

1=6 ~ M�1 2 k=N�=16,
so, in the trunk relative to the petiole, a0=aN � nN=12 ~ M1=16. Taking
N < 18 and n � 2, this gives a0=aN < 2:8, so, if aN < 10 mm, then
a0 < 30 mm. Furthermore, over variation in mass of 12 orders of
magnitude, the radius of a xylem vessel in the trunk, a0, should
change by only about 60% (refs 4, 11).

Third, the pressure gradient across an arbitrary branch, DPk/lk

scales as l 2 6Åa
k � l 2 1

k and so is steeper in smaller branches than larger
ones. In particular, the ratio between trunk and petiole is predicted
to be �DP0=l0�=�DPN =lN� � lN =l0 ~ M 2 1=4, and so is smaller in taller
trees. If l0 < 4 m and lN < 4 cm, then this ratio is ,1/100 (refs 4, 5).
The ¯ow rate through a single tube ÇQi � DP=Zi, where DP is the
overall pressure difference between air and soil. Because Zi and DP
are both independent of plant size, QÇ i must also be size independent;
the ¯ow rate in a tube in a large tree is therefore the same as that in a
small plant. This is the origin of the `energy equivalence
relationship'21. Metabolic rate, B, the rate of gross photosynthesis,
is proportional to the total volume ¯ow rate through all n0 vascular
tubes, and is therefore given by ÇQ0 � n0

ÇQi � nN nN
ÇQi ~ M3=4 (refs 2,

21). Thus B ~ M3=4.
Fourth, tubes taper, so ¯uid velocity, uk, must increase in small

branches. The ¯ow rate through a single tube is ÇQi � p a2
kuk, so

uk~ a2 2
k ~ r 2 1=3

k . Thus, the ratio of petiole to trunk velocities
uN =u0 � �r0=rN �

1=3. Taking rN < 0:5 mm and r0 < 50 cm gives
uN =u0 < 4:6. Allometrically, uk scales as M-(1-k/N)/8 so, for the
trunk, u0 ~ M 2 1=8. Thus, over eight orders of magnitude variation
in mass (roughly a 50-cm sapling relative to a 50-m tree), ¯uid
velocity in the trunk is predicted to decrease by a factor of ,10
(ref. 4).

Fifth, a particularly sensitive test of the model is its accurate
prediction of how total plant resistance changes as progressively
larger branch segments are removed (Box 4).

Finally, if tapering continued inde®nitely, vessel radii in the trunk
would become too large, leading to a maximum height for trees. In
Box 5 we show that hmax,100 m.

Although the model makes several simplifying assumptions, its
power rests on fundamental physical and biological principles as
well as realistic features of the architecture, biomechanics and
hydrodynamics of vascular plants. It accurately predicts scaling
exponents (Table 1), their normalizations and the magnitude of

many variables such as leaf area supplied by a tube and conductivity
of a branch segment8,10±12. We are unaware of any data that seriously
disagree with its predictions. Because this zeroth-order model
describes an `average idealized' plant, it can serve as a starting
point for more elaborate models that incorporate special features of
plants of different taxa or growing in different environments. Such
complications include: (1) variation in vessel size within and among
plants growing in different environments; (2) horizontal ¯ow
between parallel tubes; (3) variation in tube length and branching
symmetry (but see ref. 22); (4) variation in a, that is, not all
branches are subject to the same biomechanical constraint2,15; (5)
departures from precise volume ®lling in plants such as palms, vines,
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Figure 2 Effect of sequentially removing branches of increasing radius, rk, on the

proportion of total resistance remaining, Rk. The predicted value, Åa � 1=6, is in

excellent agreement with the data12 that represent two trees. In contrast, Åa � 0,

corresponding to no tapering of tubes as in the pipe model6, and Åa � 1=3, give

poor agreement. The curves terminate when only the trunk remains. If extra-

polated, all would converge at the trunk diameter, ,14.5 cm, where rk � r0 and no

conducting tissue remains, such that Rk � R1 � 0.

Box 4 Removing branch segments

Suppose that only branches up to the kth level remain. Because the total

number of tubes in the trunk is still n0, the total resistance of the remaining

branch network is ZTOT
k � �Sk

k9�0Z
i
k9�=n0; note that ZTOT

N is the total resistance

of the uncut tree. The ratio of these, Rk [ ZTOT
k =ZTOT

N , is given by Rk �

��rk�1=r0�
p 2 1�=��rN�1=r0�

p 2 1�, where p [ 2�1 2 6 Åa�=3a and rN�1 [ rNn2 a=2.

Note that RN � 1 and R2 1 � 0, the latter corresponding to the limit

where all conducting tissue has been removed. As shown in Fig. 2, our

prediction, Åa � 1=6, agrees very well with measured values12 and provides

a much better ®t than the classic pipe model, Åa � 0.

Box 5 Area of conducting tissue and the maximum height of trees

From the argument leading to equation (2), we have ACT
k ~ r2�1� Åa�=a

k ~ ATOT7=6
k .

This can be expressed in terms of the number of leaves, nL
k, distal to the

kth level branch: ACT
k ~ �nL

k �
�1� Åa� ~ �nL

k �
7=6. Now, from equation (2), the pro-

portion of conductive tissue relative to total cross-sectional area of a

branch scales as fk ~ r2�1� Åa 2 a�=a
k ~ r1=3

k (refs 8, 13, 14). For the trunk, in

particular, we necessarily have f0 # 1, so equation (2) leads to a limitation

on the radius and consequently the height of a tree:

hmax
�

lN
�1 2 n2 1=3�

r2
N

a2
NnN

� �1=3�1� Åa 2 a�

; rmax
0 � rN

r2
N

a2
NnN

� �a=2�1� Åa 2 a�

With a � 1 and Åa � 1=6, hmax � lNr4
N=�a

4
Nn2

N�1 2 n2 1=3�� and rmax
0 � r7

N=a
6
Nn3

N .

Because of the large exponents, these formulae are very sensitive to the

parameters of the petiole. For example, take rN � 0:5mm, aN � 10 mm,

and nN � 200, then rmax
0 < 1m and hmax < 40m; if, instead, aN � 8 mm, then

rmax
0 < 4m and hmax < 100m. Thus, although these formulae cannot be

used to accurately estimate maximum size, they do show why hmax is of

the order of 100m rather than 1m or 1,000 m. This provides a fundamental

mechanical and hydrodynamic explanation why the size of trees is

limited. If the network were not optimized, then hmax would be substan-

tially reduced; for example, if Åa � 1=3, then hmax < 1m. Thus, if trees are to

grow tall, Åa must approach the optimal minimum value,1/6.
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ferns, grasses and saplings with few branches, so that g ! n 2 1=2 rather
than n-1/3, leading to lk ~ rk (refs 7, 15); and (6) constrictions in
tubes at petioles and perhaps at other branch junctions4,16. These
complications are expected to have small effects, because many
quantities, such as scaling exponents, effectively average out over
the whole plant.

The model quantitatively predicts how vessels must taper to
compensate for variation in total transport path length. This is
supported by measured changes in vessel radius and resistance
within and between plants4,11 and leads to a maximum height for
trees. An important consequence is that tapering ensures compar-
able xylem ¯ow to all leaves. Competition for light has apparently
led to a design that maximizes canopy height and simultaneously
minimizes tapering of vascular tubes. In a given environment with a
®xed pressure differential between air and soil, on average all xylem
tubes of all plants conduct water and nutrients at approximately the
same rate. This counterintuitive result provides the fundamental
basis for the recently demonstrated equivalence of resource use,
independent of plant size, across diverse ecosystems21.

The model shows that quarter-power allometric scaling laws,
which are well known in animals1, also apply to many characteristics
of plants2. There are many parallels: in both, metabolic rate scales as
M3/4, radius of trunk and aorta as M3/8, and size of and ¯uid velocity
in terminal vessels as M0. It seems that these scaling laws are nearly
universal in biology, and that they have their origins in common
geometric and hydrodynamic principles that govern the transport
of essential materials to support cellular metabolism. M
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Table 1 Predicted values of scaling exponents for physiological and anato-
mical variables of plant vascular systems.

Variable Plant mass Branch radius

Exponent
predicted

Symbol Symbol Exponent

Predicted Observed
.............................................................................................................................................................................

Number of leaves 3
4
(0.75) nL

0 nL
k 2 (2.00) 2.007 (ref.12)

.............................................................................................................................................................................

Number of branches 3
4
(0.75) N0 Nk -2 (-2.00) -2.00 (ref. 6)

.............................................................................................................................................................................

Number of tubes 3
4
(0.75) n0 nk 2 (2.00) n.d.

.............................................................................................................................................................................

Branch length 1
4
(0.25) l0 lk

2
3
(0.67) 0.652 (ref. 6)

.............................................................................................................................................................................

Branch radius 3
8
(0.375) r0

.............................................................................................................................................................................

Area of conductive tissue 7
8
(0.875) ACT

0 ACT
k

7
3
(2.33) 2.13 (ref. 8)

.............................................................................................................................................................................

Tube radius 1
16

(0.0625) a0 ak
1
6
(0.167) n.d.

.............................................................................................................................................................................

Conductivity 1 (1.00) K0 Kk
8
3
(2.67) 2.63 (ref.12)

.............................................................................................................................................................................

Leaf-speci®c conductivity 1
4
(0.25) L0 Lk

2
3
(0.67) 0.727 (ref.17)

.............................................................................................................................................................................

Fluid ¯ow rate QÇ k 2 (2.00) n.d.
.............................................................................................................................................................................

Metabolic rate 3
4
(0.75) QÇ 0

.............................................................................................................................................................................

Pressure gradient 2 1
4
(-0.25) DP0/l0 DPk/lk 2 2

3
(-0.67) n.d.

.............................................................................................................................................................................

Fluid velocity 2 1
8
(-0.125) u0 uk 2 1

3
(-0.33) n.d.

.............................................................................................................................................................................

Branch resistance 2 3
4
(-0.75) Z0 Zk 2 1

3
(-0.33) n.d.

.............................................................................................................................................................................

Tree height 1
4
(0.25) h

.............................................................................................................................................................................

Reproductive biomass 3
4
(0.75)

.............................................................................................................................................................................

Total ¯uid volume 25
24

(1.0415)
.............................................................................................................................................................................

Values are given as a function of total plant mass, M, and branch radius, rk. For the latter
case, predictions are compared with measured values in the last column. References cited
do not quote con®dence levels, except for branch length, where they are given as 60.036.
Because botanists rarely report allometric scaling with mass, no values for observed
exponents are quoted. n.d., no data available.
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The co-evolutionary `arms race'1 is a widely accepted model for
the evolution of host±pathogen interactions. This model predicts
that variation for disease resistance will be transient, and that host
populations generally will be monomorphic at disease-resistance
(R-gene) loci. However, plant populations show considerable
polymorphism at R-gene loci involved in pathogen recognition2.
Here we have tested the arms-race model in Arabidopsis thaliana
by analysing sequences ¯anking Rpm1, a gene conferring the
ability to recognize Pseudomonas pathogens carrying AvrRpm1
or AvrB (ref. 3). We reject the arms-race hypothesis: resistance
and susceptibility alleles at this locus have co-existed for millions
of years. To account for the age of alleles and the relative levels
of polymorphism within allelic classes, we use coalescence theory
to model the long-term accumulation of nucleotide polymor-
phism in the context of the short-term ecological dynamics of
disease resistance. This analysis supports a `trench warfare'
hypothesis, in which advances and retreats of resistance-allele
frequency maintain variation for disease resistance as a dynamic
polymorphism4,5.

Arabidopsis thaliana exhibits a disease-resistance polymorphism
in which susceptible individuals are completely lacking Rpm1 (refs
3, 6). The presence of Rpm1 homologues in Brassica6 and the closely


