Deflection of light to second order: A tool for illustrating principles
of general relativity
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We calculate the deflection of light by a spherically symmetric body in general relativity, to second
order in the quantitya M/dc?, whereM is the mass of the body antlis a measure of the distance

of closest approach of the ray. Using three different coordinate systems for the Schwarzschild metric
we show that the answers for the deflection, while the same at Gdétdc?, differ at order
(GM/dc?)2. We demonstrate that all three expressions are really the same by expressing them in
terms of measurable, coordinate-independent quantities. These results provide concrete illustrations
of the meaning of coordinates and coordinate invariance, which may be useful in teaching general
relativity. © 2003 American Association of Physics Teachers.
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[. INTRODUCTION AND SUMMARY Space Interferometry MissiofBIM)? or the European Space
Agency’s GAIA mission® instead such scientific questions as
The deflection of light is one of the empirical cornerstonesthe search for extra-solar planets, and improving the cosmic
of general relativity, from the 1919 measurements of starlighjistance scale by extending the reach of parallax measure-
deﬂectior_1 during a _solar ecl_ipse, to the latest radio telescop,enents, have been the main motivations for such missions.
observations of radio galaxies and quasars. Through the usgj| it is not unreasonable to hope that these or possible

of Very Long Baseline 'Rad|o Interferomet(yLBl) to ob- follow-up missions might actually have the capability to de-
serve thousands of radio galaxies and quasars over the ent*re

cletl sphere. e beding by e Sun h o been U1 SN0 o, ThTEe L el o heve o
to agree with general relativity to a few parts in*1@or a 9 P .

review of the latest results, see Ref. The related phenom- These considerations have already motivated a number of

enon of gravitational lensing has become a standard astrg_afulaﬂon; of the s_,ecc;nd—or(?jer te’l‘r‘f. d-order defl
nomical tool, especially important for the study of the distri- . A S€cond motivation for studying the second-order deflec-

bution of dark matter in the universe and for imaging thetion, and the main theme of this paper, is that it is a useful

most distant galaxies. way for teachers to illustrate some principles of general rela-
The standard general relativistic formula for the deflectiontiVity, in a relatively simple context. Chief among these prin-
is ciples isgeneral covarianceCoordinates in general relativ-

ity are completely arbitrary; one has total freed@ubject to

some simple mathematical constraints of continuityone’s
() : ; . .

labeling of events in space—time. Only variables that relate
to physically measurable quantities are meaningful. While all
textbooks expound upon this principle at length, it is the rare
text that provides a concrete example where an effect is cal-
Yulated in two different coordinate systems and shown ex-

. ) . plicitly to be the same measurable effect. Instead, a single,

Sgts:h:ﬁévﬁc?rglfgmffgfoagilOrgsz?gnag&i?ﬁilspﬁé%?gﬁf}ﬁ convenient coordinate system is selected, and calculations of
N P! ... _the given effect are done in that system.

cient. However, plans are being developed to launch orbiting The deflecti  liaht i h le. Th i

observatories that use optical interferometry to achieve an- € deflection of fight provides such an example. The ex

gular precisions at the level of microarcsecorngsrcsed. pression Of. Eq.(l). IS ffeq“e”t'y. calculated using the
Because, at the limb of the SUBM/dc2~2x10®, one Schwarzschild metric, which describes the space—time exte-

might expect the second-order or second post-NewtoniaHor to any static, spherically symmetric body. However this
(2PN correction to be of order (1.7%)(2x 107, or a few space—time can be expressed in an infinity of different coor-
uarcsec. | ' dinate systems, including Schwarzschibd curvature coor-

Unfortunately, to measure this tiny effect using an opticaldinates, isotropic coordinates, harmonic coordinates, and
device pointing almost directly toward the Sun presents Sigothers. Some der|vat|ons_use, mstea_d of the exact Sch\_/varzs—
nificant technological challenges, not the least of which ischild solution, an approximate solution from the linearized
thermal control of an on-board optical bench that must mainversion of general relativity or from the post-Newtonian
tain picometer level metrology. For this reas@mong oth- expansion of the field equations. All derivations give Eq.
ers, the second-order deflection of light by the Sun has not1). The astute student might therefore ask a number of
been a primary goal of proposed missions such as the NAS4uestions:

d

where M is the mass of the body andl is the radius of
closest approach of the ray, ail, and R, are the mass
and radius of the Sun. This formula is actually the leadin
term in an expansion in powers @M/dc?, known as a

arcsec,

A —4GM—1750 M
¢~ g ~HMwL
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(1) If the coordinate systems mentioned are all different,Eq.(5), r,=ry[1+O(M/ry)?]. Consequently the difference
why is the final expression for the deflection the same?between isotropic and harmonic coordinates will not show
(2) If they do differ, where does the difference first show up in the deflection until 3PN order.
up? (3) To express the three results in terms of something
(3) If the expressions for the deflection are ultimately differ- physically measurabléat least in principlg one option is
ent, what must be done to them so that they can be se choose the so-called “circumferential radius&, which
to represent the same physically measured result? s 1/27 times the physically measured circumference of a

. . . circle of a given coordinate radigboldingt, r, and# fixed).
In th!s paper, we answer these questions by calculatlng thErom the three forms of the metric, Eq®), (3) and (4),
deflection of light to 2PN order using the Schwarzschild met-.t is simple to show that c=rs=r,(1+M/2r )2=r,+ M.

ric, written in three different coordinate systems. The metricd

in these three coordinate systems have the following forméﬁChWarzsﬂfh"d c'o?rdingtes are in faietrfwinedsuch thars is
(henceforth we use units in whidB=c=1). the circumferential radius.By using these expressions to

Schwarzschild coordinates: transform each formula for the deflection (@) to dc, the

) circumferentialdistance of closest approach, we obtain the

r single expression
——(1— 2, S 1.2402
ds?=—(1-2M/rg)dt>+ 1_2M/rs+rsd(2 . 2) M (M)Z 5.
Ap=—+|+| | —— 7
Isotropic coordinates: 4 dc \dc/ | 4 )

This is the second-order deflection of light, in coordinate
independent language.

The remainder of this paper provides the details and fur-

3 ther discussion. In Sec. I, we write down a general form for

the static spherical metric and derive the equation of motion

for photons in a form that permits a straightforward solution

(1—M/2r))?

ds’=- (1+M72r,)2

dt?+ (1+M/2r)4(drZ+r2dQ?).

Harmonic coordinates:

4P — 1-M/ry 4t 1+M/ry 2 via second-order perturbation theory. In Sec. Ill, we special-
1+M/ry 1-M/ry " ize to the three coordinate systems and derive the deflection
5 o in each. Section IV provides concluding remarks.
+r(1+M/ry)°dQs, (4

24 P2+ ci 2 i ;
where dQ?=d 62+ sir? 6d¢?, which is the standard metr!c Il. EQUATION OF MOTION FOR PHOTONS IN A
on the two-sphere. The transformations among these diffets £\ ERAL SPHERICAL STATIC METRIC

ent coordinate systems involve only the radial coordinate,

and are given by
rs=r(1+M/2r)?

We begin by writing the metric for a static, spherical sys-
tem in the form

(5) ds’=—A(r)dt?>+B(r)dr?+r?C(r)dQ>. 8

o ~ For photons, the equations of motion can be obtained by
The results for the deflection in these three coordinatg/arying the Lagrangiam = (ds/d\)? with respect to a pa-
sytems are rameter \, or from the geodesic equatiom?x®/d\?

I‘S=I’H+|\/|.

AM  (M\ 157 ] _ +ng(dx3/d7\)(dx’//d)\)=0, subject to the constraint that
Ab=go g |72 —4| Schwarzschild, ds=0 along the world line of a photon. Because of the
; : spherical symmetry, we can choose the equatorial p(@ne
aM M\ [ 157 . =7/2) to be the plane of the motion. The resulting equations
=—*+| 5| |~ —8| Isotropic, of motion are
d\d/ [ 4 7]
5 dt
4M M\ 4 157 _ A——=const&E, 9)
=—+|—| | ——8| Harmonic, (6) di
dy dy/ | 4 ]
d
whered represents in each case the coordinate radius at tk@r2—¢=constz L, (10
point of closest approach of the ray. These results agree with
other work?~’ d dr dt\2 dr\2 ,[de|?
W|t_h these results, we may answer the astute studenta(ZBa +A ﬁ) -B (ﬁ) —(Cr9) (ﬁ) =0,
questions. 11)

(1) At first order, the deflection results from the first-order

corrections to flat space—time in the metric. But, from Eq.whereE andL are proportional to the conserved energy and
(5), the three coordinate systems are themselves the samangular momentum of the photon at infinity, and where
to first order in M/r, ie., rg=r|[1+O(M/r)]=ry[1
+O(M/ry)], consequently the deflection is the same in allEgs.(9) and(10) into (11), definingu=1/r, and converting

three coordinates, to first order.

prime denotes a derivative with respect rto Substituting

from A to ¢ as the independent variable using EtQ), we

(2) The difference first shows up at 2PN order, as can bebtain the second-order differential equation tigr

seen in Eq.6). Interestingly, the 2PN results for isotropic
and harmonic coordinates are identical. This is because these
coordinates are actually the samesexondorder, i.e., from

771 Am. J. Phys., Vol. 71, No. 8, August 2003

C2
AB

1 d
T 20?7 du

e

d4u c) ~_1,d/cC
a2 \B/YT 2% dqulB

J. Bodenner and C. M. Will 771



whereb=L/E is the “impact parameter.” The condition that +r?dQ?=dxX*+dy’+dZ. In these coordinates, A=[(1

the world line be null §s*>=0) can be cast in the form —Mu/2)/(1+Mu/2)]?, B=C=(1+Mu/2)* so Eq. (12
2 becomes
du Cc/ C 5
ds) “BlAvw " B M AMee
d¢2+u- b2 (1—Mu/2)3(1 Mu/4)

Equation(13) can be shown to be equivalent {b2) by dif-
ferentiating it with respect t@o. The minimum ofr, or the 2M )
maximum ofu, denotedu,,, is the turning point of the mo- =7 |1+ 7 Mu+O(Mu)”). (20

tion. This occurs wherdu/d¢=0, i.e., when o )
Substituting Eq(16), we obtain the sequence
b= C(Um)/A(Up) Uy, (14 o

u
— 4 su;=2(ugh) 2,
IIl. SOLUTIONS FOR THE SECOND-ORDER de

DEFLECTION d2su,
dg?
with the solution

In Schwarzschild coordinate$ =B~ '=1—-2Mu, C=1, _ 2 2 4 o 2
s0 Eq.(12) becomes u/ug=cos¢+2Mug/(ugh)“+15Mup) ¢sm¢/4(u0b)(2.2)

—d2u+ =3Mu?

02 u=3Mu-.

15 (21)
+ 5u2=7(uob)‘2 CoS¢,
A. Schwarzschild coordinates

(15) The maximum u,, is again at ¢=0, with u,=ug[1

+2Mug/(ugb)?]. Also, from Egq. (14), we have b?
The homogeneous solution i8=uycos$, which is a =Y (1+Muw2)®/(1=Muy/2)?~ug*(1+4Muy). I
straight line with turning point aty=0, andu—0 orr—c  this case, u—0 at ¢=m/2+5 where 6=[2Mug
at ¢=+ /2. We need to find a solution to second order in+157(Mug) 8+ O(Mug)®]/(ugb)®. Eliminating u, andb
the dimensionless parametdiu,=M/r,, which we assume in favor of up,, and doubling the angle, we obtain

to be small; to do so, we write [ 15w

U= Uo[ COSh+ MUgSUy + (Mug) 28Uy +- -], (16) A¢=4aMun+(Mup) (T_S : (23
substitute into(15), and collect terms of equal powers of Substitutingu,,=1/d,, we obtain the second equation of Eq.
Mug, to obtain the sequence of equations (6).

d?su, . .

a2 + 8u,=3 cog ¢, C. Harmonic coordinates

d2su (17 In harmonic coordinatesA=B~1=(1—Mu)/(1+Mu),

—22+6u2=65ulcos¢. C=(1+Mu)?. These coordinates have the property that,

de when first transformed to Cartesian coordinates via the nor-
Recalling the standard inhomogeneous solutions to th&wal transformationx=r sin#cos¢, y=r sinésing, andz
differential equation d?y/dx®+y=cosfX), namely y= =r cos#, the resulting metric satisfies the differential equa-
—cosi)/(n®—1), forn#1, andy=(¢/2)sing, forn=1, we  tions
obtain the solution 9

u/ug=cos¢+ (Mug)(3—cos 2¢)/2 ,;xv( N—99"")=0, (24)

+3(Mug)?(20¢ sin ¢+ cos 3p)/16. (180  whereg is the determinant of the metrig”” is the inverse

of the metric, and a summation over the four values
(t,x,y,z) of the indexv is assumed. These coordinates are

= = 2 -
at ¢. O,thwfl:]eregpc:nuln /;i[;Jr M u0+3(IM Ufo) 5/%6]' b'tAs used mostly in analyzing the weak field limit of general rela-
suming thau—0 at ¢=m We can solve fow to obtain tivity and the generation of gravitational radiation.

5=2Mug+ 157 (Mug)?/8+ O(Mug)3. Because the solution Equation(12) then becomes
is symmetric aboutp=0, the total deflection angle is twice
this. Converting fromug to u,,, we obtain

The maximum ofu can be shown by differentiation to occur

d2U 3 2,3
W—FU:FT(].‘FMU) +2M*“u
157
A¢=4Mum+(|v|um)2(——4). (19 oM
4 — 2,3 3,,4
—F(1+3Mu)+2M u*+0O(M3u?). (25
Substitutingu,,= 1/dg, we obtain the first equation of Eq.

(6). Substituting Eq(16), we obtain the sequence
d?su, -,
B. Isotropic coordinates Tﬁz+ 03 =2(Ugb)
Isotropic coordinates have the property that the spatial part @+ Sy = 6(Ugh) 2 oS+ E(c053¢+3 cos¢()26)
of the metric is proportional to the flat space metiic? do¢ 2 0 2 '
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with the solution where u,, is the value wherai?>=C/Ab?. Any change of
U/Ug= 0S¢+ 2(MUg)/(Ugh)2+ (MUg)? integration v_ariableuzf(lv) gannot alter the value olg,
) _ only its explicit expression in terms af,,. Note that, be-
X{12(1+4/(ugb)*) psing—cos 3p}/16.  (27)  cause the integral depends only on the impact paranbeter

The maximum u,, is again at $=0, with u,~ug[1 and onM (which appears in the function, B, andC),

+2Mug/(ugh)?]. Also, from Eq. (14), we have b2  there must be a unique answer fde in terms ofb, inde-
= U 2(1+Mup)¥(1— Mug) ~u-2(1+4Mu,). The angle pendent of coordinate system. Equati@f) is that answer to
5 at which u=0 is given by 6=[2Mug+3m(Mug)X(4  Second order. o .
+ (Ugh) ~2)/8+ O(Mug) ]/ (Ugb)2. Eliminating u, andb in Although the circumferential radiug: a_n_d the |mpac_t pa-
favor of U and doubling the anale. we obtain rame.terb are formally observable quantities, neither is very
m» 9 gie, practical for real-world measurements of the deflection of
157 light, for obvious reasons. Instead, one combines the equa-
A¢p=4Muy,+(M Um)Z(T —8)- (28)  tion of motion for the light signal with an equation of motion
for the observer receiving the sign@luch as a telescope on
Substitutingu,=1/dy, we obtain the third equation of Eq. Earth, and calculates the angle of the received sigonal-

(6). ally relative to a similarly calculated angle from a reference
source nearby in the skyas a function of propetatomio
IV. DISCUSSION time measured at the receiver. In observations that use radio

. ) _ interferometry, this angle can be directly related to a phase

In Sec. 1, we showed explicitly how the seemingly differ- gitference in the radio signal between the two telescopes, so
ent second-order expressions could be seen to be equivalgl the measurable, coordinate-independent quaniiby s
when expressed in terms of the proper circumferential radiugye phase difference as a function of proper time. The mea-
of the circle of closest approach. This radius is obtained by, redd () can then be compared with the predictdr),
calculating the proper distance around a circle of constanjsing |east-squares or other estimation techniques, to see
coordinate radius and fixed time dt=0), say with6=7/2,  how well theory matches the observations. These kinds of
and dividing by 2r. From the general form of the metric, EqQ. analyses are standard in Very Long Baseline Interferometry
(8), we see that, around this circles=rC(r)¥2d¢, so that  (vVBLI).
re=rC(r)¥2 For the three coordinate systems, we obtain
re=rs=r;(1+M/2r)%2=ry(1+M/ry). In terms of d¢
then, all three formulas for the deflection collapse to &g.
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