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We study the effects of the coupling to an Ohmic quantum environment on the static and dynamical
properties of a class of disordered spin models in a transverse magnetic field using a method of direct spin
summation. We discuss the influence of the environment on various features of the phase diagram of the
models as well as on the stability of the possible phases.
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I. INTRODUCTION

The coupling of quantum two-level systems(TLS) to a
dissipative environment has decisive effects on their dynami-
cal properties. The case of dilute systems, in which interac-
tions between the TLS can be neglected, has been exten-
sively investigated in the literature1,2 and is now well
understood. The physics that emerges in the cases in which
interactions between the TLS may not be neglected is much
less understood.

In this paper we study the effects of a dissipative environ-
ment on the equilibrium and dynamical properties of quan-
tum glassy systems. Spin-glass phases in which quantum
fluctuations play an important role were found in a number
of experimental systems3–5 and the importance of interac-
tions on the properties of tunneling defects in structural
glasses was recently demonstrated.6

Mean-field7 and finite dimensional8 quantum spin-glass
models have been studied intensively in the last few years.
The effects of a coupling to the environment have been dis-
cussed for some of these models such as the quantum spheri-
cal p-spin glass model,9–11 the SUsNd random Heisenberg
model in the limitN→`,12 and the quantum random walk
problem.13 In all these cases the relevant degrees of freedom
are continuous, a fact that makes analytical treatments pos-
sible.

Here we analyze the more realistic case of systems of
interactingS=1/2 spins coupled to a bath of harmonic oscil-
lators. We consider the case in which the interactions involve
p-uplets of spins and are of infinite range. Forp=2 we re-
cover a model for metallic spin glasses studied previously.14

For p.3 the model exhibits richer behavior,15–18 including
the possibility of having first order transition lines.

We use a method of direct spin summation(DSS) first
used in the context of disordered spin models by Gold-
schmidt and Lai.19 In this method the disorder-averaged free-
energy density is computed using the replica method to av-
erage over the random quenched interactions. Next, a Trotter
decomposition is performed in order to express the partition
function of the resulting single-site self-consistent problem
as a sum over different contributions, each coming from a

possible spin historysstd= ±1. The continuous imaginary-
time variable 0øtøb" is discretized on a gridtt= tb" /M,
t=0,¯ ,M −1, and the partition function is computed by
numerically performing theexactsum over the 2M possible
discrete spin histories,st;ssttd= ±1. Physical results are
obtained repeating this procedure for various values ofM
and extrapolating toM→`.

The main conclusion of this work is that the coupling to
the enviromement reduces the strength of the quantum fluc-
tuations thus favoring the appearance of the spin-glass phase.
Whereas forp=2 the phase transition is always second order,
for pù3 quantum fluctuations drive the transition first order
below a tricritical temperatureT!. We find thatT! decreases
with the strength of the coupling to the bath. Forpù3 a
dynamic transition precedes the equilibrium phase transition.
The coupling to the bath also stabilizes the dynamic glassy
phase.

The organization of the paper is as follows. In Sec. II we
introduce the coupledp-spin-bath model and the formalism
that we use to solve it. In Sec. III we discuss the numerical
method and present our results. Section IV contains our con-
clusions.

II. THE MODEL

We are interested in disordered Ising spin models in a
transverse field described by Hamiltonians of the type

Hs = HL − Go
i=1

N

ŝi
x s1d

with

HL = − o
i1,¯,ip

N

Ji1,. . .,ip
ŝ i1

z
¯ ŝ ip

z . s2d

Here,ŝ x, ŝ y, ŝz are the standard Pauli matrices,Ji1¯ip
de-

notes a quenched random exchange between groups ofp
spins, G is a transverse magnetic field, andN is the total
number of spins. The sum runs over all possiblep-uplets of
spins. The model is then fully connected and mean-field in
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character. The transverse field introduces quantum fluctua-
tions in what would otherwise be a purely classical model.

To completely define the model we must choosep and the
distribution PfJg of random interactions. We consider the
case in which the random independent variablesJi1,. . .,ip

are
Gaussian with zero mean and variancep! J2/2Np−1. The scal-
ing of the variance withN is chosen so as to ensure a good
thermodynamic limit.

We study the thermodynamics and some aspects of the
nonequilibrium dynamics of model 1 coupled to a quantum

environment represented by a set ofÑ independent harmonic
oscillators. We assume that the oscillators are in thermal
equilibrium and that each of the spins in the system is
coupled to a different subset of these.

The bosonic Hamiltonian of the isolated reservoir is

Hb = o
l=1

Ñ
1

2ml
p̂l

2 + o
l=1

Ñ
1

2
mlvl

2x̂l
2. s3d

The coordinatesx̂l and the momentap̂l satisfy canonical
commutation relations. For simplicity we consider a bilinear
coupling

Hsb= − o
i=1

N

ŝ i
zo
l=1

Ñ

cil x̂l s4d

that involves only the oscillator coordinates. The Hamil-
tonian for the coupled system is then given by

H = Hs + Hb + Hsb+ Hct, s5d

where we added a counter term

Hct = o
l=1

Ñ
1

2mlvl
2So

i=1

N

cil ŝ i
zD2

, s6d

whose effect is to eliminate a possible mass normalization
induced by the coupling to the bath.2

The partition function of the combined system for a par-
ticular realization of the bonds

Z = Trfe−bHg s7d

involves a sum over all states of the system and of the bath.
The trace over the variables of the bath can be performed
explicitly using standard techniques.2,20,21The result of trac-
ing out these variables can be expressed in terms of the spec-
tral function of the bath

I ijsvd ;
p

2o
l=1

Ñ
cil cjl

mlvl
dsv − vld = d i j Isvd. s8d

We chose to study the effect of an Ohmic bath parameterized
as

Isvd = 2h "vQsvmax− vd s9d

with h the friction constant,vmax an ultraviolet cutoff and
Qsxd the Heaviside theta function.

This problem can be mapped onto aclassicalIsing model
using the Totter-Suzuki formalism.15,19,22 This amounts to
writing the path integral for the partition function as a sum
over spin and oscillator variables evaluated on a discrete
imaginary-time grid on the pointstt=b" /Mt labeled by the
index t=0, . . . ,M −1. Periodic boundary conditions are im-
posed on the discretized time axis. To recover the correct
representation of the trace the limitM→` should be ulti-
mately taken. The finiteM expression yields a sequence of
M approximants to the asymptoticM→` formula.

The Mth approximant of the “reduced” partition function
obtained after integrating out the bath is

Z = Trhs i
tjexpH b

M
o
t=0

M−1

o
i1,¯,ip

N

Ji1¯ip
s i1

t
¯ s ip

t

+ o
t=0

M−1

o
i=1

N

fA + Bs i
ts i

st+1dg − o
t,t8=0

M−1

o
i=1

N

s1 − s i
ts i

t8dCst−t8dJ ,

s10d

where

A =
1

2
lnFsinhSbG

M
DcoshSbG

M
DG , s11d

B =
1

2
lnFcothSbG

M
DG , s12d

Cst−t8d =
2h

p "
E

0

vmax

dv

3
coshfvb"sst − t8d/M − 1/2dgsinh2svb"/2Md

v sinhsvb"/2d
.

s13d

The trace represents the sum over all 2N3M distinct classical
Ising spin configurations,s i

t= ±1, for each spin,i =1, . . . ,N,
evaluated at each time-slice,t=0, . . . ,M −1.

The disordered averaged free-energy is calculated using
the replica trick23

bF̄ = − ln Z = − lim
n→0

Zn − 1

n
. s14d

After some standard manipulations, and up to some irrel-
evant factors, we obtain

Zn = p
a,b=1

n

p
t,t8=0

M−1 E DQatbt8DLatbt8expf− NPsL,Qdg,

s15d

with
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PsL,Qd = o
a,b=1

n

o
t,t8=0

M−1 FLatbt8

M2 Qatbt8 −
b2J2

4M2sQatbt8d•p

+ Cst−t8dd
abs1 − Qatbt8dG − lnTrhs atje

Heff, s16d

Heff = o
a,b=1

n

o
t,t8=0

M−1
Latbt8

M2 s ats bt8 + o
a=1

n

o
t=0

M−1

fA + Bs ats ast+1dg ,

s17d

where the bullet is used to distinguish the ordinary power
from the matrix power. In the thermodynamic limit,N→`,

the integrals inZ̄n can be evaluated with the saddle point
method at the expense of interchanging the order of theN
→` and n→0 limits. The disordered-averaged free-energy
per spin is then

b f̄ = lim
n→0

PfL0,Q0g
n

, s18d

whereL0 andQ0 satisfy

UdPsQ,Ld
dQ

U
Q0,L0

= 0, UdPsQ,Ld
dL

U
Q0,L0

= 0. s19d

Hereafter we omit subscripts in the saddle-point valuesQ0
andL0. The disorder-averaged entropy per spin is easily ob-
tained from the disorder-averaged free-energy density and

−
s̄

kB
= b f̄ +

1

n
o

a,b=1

n

o
t,t8=0

M−1 Fb 2J2

2M2 sQatbt8d•p

− d abs1 − Qatbt8d
] Cst−t8d

] b
G

+
bG

sinhs2bG/MdFcoshs2bG/Md −
1

n
o
a=1

n

Qast+1datG .

s20d

Another physical observable of interest is the magnetic sus-
ceptibility

x =U ] M
] h

U
h=0

, s21d

whereM=N−1oi=1
N ks i

zl is the total disorder-averaged mag-
netization andh a longitudinal external magnetic field. In
terms ofQatbt8 the susceptibility is given by

x =
b

M2 o
a,b=1

n

o
t,t8=0

M−1

Qatbt8. s22d

The right-hand sides of Eqs.(20) and (22) should be evalu-
ated at the saddle point.

The matrix elementsQatbt8 are the order parameters of the
model

Qatbt8 =
1

N
o
i=1

ks i
ats i

bt8l. s23d

Because of the translational invariance in the Trotter time
direction the diagonal terms in the replica indices depend on
the time difference only

Qatat8 = qdst − t8d. s24d

Notice that due to the periodic boundary conditionqdstd
=qdsM − td. In addition, as qds0d=1, only st− t8d
=1,2,¯ , intM /2 need to be considered. The off-diagonal
elements in the replica indices,Qatbt8 with aÞb, aret andt8
independent as shown by Bray and Moore.24

In order to determine the different phases of the model,
we consider the followingAnsätze.

(1) Paramagnetic phase. The matricesQ andL are taken
to be diagonal in replica space

Qatbt8 = qdst − t8dd ab, Latbt8 = ldst − t8dd ab. s25d

Using Eqs.(16)–(18) the disorder-averaged free-energy
per spin can be expressed as

b f̄ =
b2J2

4M2sp − 1d o
tÞt8

M−1

qd
pst − t8d −

b2J2

4M
+ o

tÞt8

M−1

Cst−t8d

− lnTrhs tje
Heff

pm
s26d

with

Heff
pm=

1

M2 o
tÞt8

M−1

ldst − t8ds ts t8 + o
t=0

M−1

fA + Bs ts st+1dg.

s27d

Here,qdst− t8d andldst− t8d are obtained self-consistently
from the extremum condition by summing over all 2M spin
configurationss t= ±1:

qdst − t8d =
Trhs tjfeHeff

pm
s ts t8g

Trhs tje
Heff

pm , s28d

ldst − t8d =
b2J2p

4
qd

p−1st − t8d + M2Cst−t8d. s29d

(2) Equilibrium spin-glass phase. In order to characterize
this phase we use a one-step replica symmetry breaking
(RSB) Ansatz

Qatbt8 = fqdst − t8d − qeagd ab + qeae
ab, s30d

Latbt8 = fldst − t8d − leagd ab + leae
ab, s31d

wheree ab is a block-diagonal matrix in replica space

e ab = 51 if a andb belong to the samem3 m

diagonal block,

0 otherwise.

s32d
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The parameterm will be referred below as thebreakpoint.
Using Eqs.(16)–(18) the disordered-averaged free-energy

density becomes

b f̄ =
b 2J2

4M2 sp − 1d o
tÞt8

M−1

qd
pst − t8d + sm− 1d

b 2J2

4
sp − 1dqea

p

−
b 2J2

4M
−

1

m
lnE dxsTrhs tje

H eff
esg

dm + o
tÞt8

M−1

Cst−t8d s33d

with

H eff
esg=

1

M2 o
tÞt8

M−1

sldst − t8d − leads ts t8 −
lea

M
+

Î2lea

M
xo

t

M−1

s t

+ o
t

M−1

fA + Bs ts st+1dg s34d

and the integration measure

dx ;
dx

Î2p
e−x2/ 2. s35d

Here and in what follows all integrals overx extend from
−` to `.

As in the paramagnetic phase, the order parametersqdst
− t8d, qea, ldst− t8d and lea are determined self-consistently
from the extremum conditions that involve a sum over all 2M

spin configurations,s t= ±1:

qdst − t8d =
E dx sTrhs tje

H eff
esg

dm−1sTrhs tje
H eff

esg
s ts t8d

E dx sTrhs tje
H eff

esg
dm

,

s36d

qea=
E dx sTrhs tje

H eff
esg

dm−2sTrhs tje
H eff

esgot
s t/Md2

E dx sTrhs tje
H eff

esg
dm

, s37d

ldst − t8d =
b 2J2p

4
qd

p−1st − t8d + M2Cst−t8d, s38d

lea=
b 2J2p

4
qea

p−1. s39d

As it has been discussed in a number of papers on classical25

and quantum15–17,26 spin-glass models, two choices for the
determination of the parameterm lead to physically different
results. The use of the extremum condition, that corresponds
to taking the value ofm at which the disorder-averaged free-
energy is stationary, leads to

m= I−1Fm2b 2J2p

4
sp − 1dqea

p + lnE dX sTrhs tje
H eff

esg
dmG ,

s40d

where

I =
E dX sTrhs tje

H eff
esg

dmlnsTrhs tje
H eff

esg
d

E dX sTrhs tje
H eff

esg
dm

. s41d

With this choice one describes the equilibrium properties of
the model.

This Ansatzyields the exact solution17 to the spherical
version of thepù3 model. Thep=2 spherical model is
solved by a simpler replica symmetric form.

We do not expect the one-step RSBAnsatzto be stable
everywhere in the phase diagram in the case of the discrete
spin models that we investigate here. The stability of the
one-stepAnsatzfor the quantum models can be tested by
extending to the quantum case the classical analysis of de
Almeida and Thouless.27 When the lowest eigenvalue of the
stability matrix (also calledreplicon) vanishes, the one-step
RSBAnsatzis marginally stable. When the replicon is nega-
tive, thisAnsatzis unstable.

By evaluation of the replicon for the values of the order
parameters and the breakpoint obtained from the extremum
conditions we found that the one-step RSBAnsatzis unstable
in the full spin-glass phase whenp=2 [Sherrington-
Kirkpatrick (SK)] model indicating the need to break the
replica symmetry further.

In the case of thepù3 classical spin model, the one-step
RSB Ansatz is unstable below a temperatureTg,Ts as
shown by Gardner28 in the classical case. Thus, the solution
for the classical Isingp spin model also requires full RSB at
very low temperatures.Tg depends on the parameterp and,
as expected, it tends toTs=J when p→2+ and it vanishes
whenp→`. We thus expect to find a Gardner line of insta-
bility also when quantum fluctuations are taken into account.
A careful study of the dependence of this line onG and the
coupling to the bath requires solving the quantum problem at
rather low temperatures. This is done in Sec. III where we
compute the location of the Gardner instability line. As seen
in Fig. 8, the region where the one-step RSB staticAnsatzis
unstable is quite small. Outside this region the one-step RSB
Ansatzis exact and can be used to study the properties of the
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pù3 quantumS=1/2 model. Elsewhere, and forp=2, we
shall regard this solution as a suitable approximation to the
correct solution.

(3) Dynamic spin-glass phase. Themarginality condition
leads to a different equation form. With this condition one
requires that the saddle-point is only marginally stable, i.e.,
the matrix of quadratic fluctuations has a zero replicon ei-
genvalue(and one does not impose the condition of extreme
on m). It has been checked by comparison to the real time
dynamics,9 that this condition yields the location of the
freezing transition of the spherical quantump-spin model
with pù3 coupled to the oscillator reservoir at the initial

time t=0.10 Here we use it as an indication of where such a
dynamic transition line should be located for the discrete
quantum spin systems.

Adapting the calculation of de Almeida and Thouless27 to
the quantum problem under study we find that the replicon
eigenvalue is given by

lR = P − 2Q + R s42d

with

P = 1 −kqea
p−2t, Q = − kqea

p−2u, R= − kqea
p−2r . s43d

The factorsr , u, andt are

r = ks as bs cs dl =

E dxsTrs teH eff
dsg

dm−4FTrs teH eff
dsgSo

t

s t/MDG4

E dxsTrs teH eff
dsg

dm

, s44d

u =
1

M2o
tt

ks ats bs ats dl =

E dxsTrs teH eff
dsg

dm−3FTrs teH eff
dsgSo

t

s t/MDG2
Trs teH eff

dsgSo
tt8

s ts t8/M2D
E dxsTrs teH eff

dsg
dm

, s45d

t =
1

M4 o
tt8tt8

ks ats bt8s ats bt8l =

E dxsTrs teH eff
dsg

dm−2FTrs teH eff
dsgSo

tt8

s ts t8/M2DG2

E dxsTrs teH eff
dsg

dm

. s46d

Here, we have defined

k ;
b 2J2

2
psp − 1d s47d

andH eff
dsg is the Hamiltonian of Eq.s34d. Finally, the values

of qdst− t8d and qea are fixed by the extremal conditions.

III. RESULTS

In this section we describe the outcome of solving the
equations we derived in the previous section and we discuss
how the coupling to the Ohmic bath of harmonic oscillators

modifies the behavior of the spin model.

A. Numerical method

The free-energy density and derived magnitudes depend
on the parameterM that in practice takes finite values. Sev-
eral strategies were proposed to study the limitM→`. Us-
adel and Schmitz29 noted that M should be such that

FIG. 1. Disorder-averaged free-energy density,f̄, of the quan-
tum S=1/2 p=3 model at temperatureT=0.3 as a function of the
transverse magnetic fieldG. The coupling to the bath ish=1.0. The
three phases of the model are represented: a physical paramagnet
labeled PM1, an unphysical paramagnet that one discard on physi-

cal grounds labeled PM2 and the spin glass. The values off̄ ob-
tained for finiteM are shown with thin lines[M =8 (bottom), M
=9 (middle), and M =10 (top)]. The result of the extrapolation to
M→` is displayed with bold lines.
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bG /M !1. For low temperatures this criterion becomes
quickly impractical since one cannot perform the complete
sum over states for such large values ofM. As an alternative,
these authors proposed to use a Monte Carlo procedure to
estimate the sum over configurations whenM is large.29,30

In this paper we adopt another method that has been pre-
viously used to study the isolated quantum SK model19 and
S=1/2 p-spin models in a transverse field.15 Physical quan-
tities are computed by DSS for values ofM in the range 8
øM ø13. The results thus obtained are fitted to series of
powers of 1/M that allows to perform the extrapolation to
M→`. In almost all cases the expected31 s1/Md2 law is
verified.

As an example, consider the free-energy density of the
different phases of thep=3 model withh=1 (that will be
discussed in detail later) displayed in Fig. 1. The four curves
correspond to three values ofM, M =8,9,10, and to the result
of the extrapolation toM→`, respectively. Figure 2 shows
the M dependence of the free energy at the value of the
transverse field at which the curves for the paramagnetic and
spin-glass phases cross. The circles represent the data for
M =8, 9, 10, 11, 12, and 13. The dashed and solid lines are
the results of fits linear in 1/M and in 1/M2, respectively.

FIG. 2. The critical averaged free-energy density,f̄, at inverse
temperatureb=3.3, as a function of the inverse number of
imaginary-time slices, 1/M. The coupling to the bath ish=1.0. The
dashed and solid lines are the results of fits linear in 1/M and in
1/M2, respectively. Circles: results of DSS forM =8,9,10,11,12,
and 13. Stars: results of DSS forM =14,15, and 16.

FIG. 3. Upper panel: The diagonal order parameterqdstd for the
p=3 model as a function oft / sb"d= t /M where t is the Trotter
index, t=0,1,¯ ,M. The temperature isT=0.3 and the transverse
magnetic field isG=0.8. The coupling to the bath ish=1. The six
upper curves are the solutions forM =8,9,10,11,12,13,from top
to bottom. The symbols are the actual data and the lines represent
the results of the spline interpolation. The lowest curve is the result
of the extrapolation toM→`. Lower panel: The limiting curve
limM→`qd

Mstd for three couplings to the environment:h=0 (bottom
curve), h=0.5 (middle curve), andh=1 (top curve), The other pa-
rameters are the same as in the upper panel.(See text for the details
of the method of extrapolation used.)

FIG. 4. Upper panel: Static phase diagram for thep=2 model as
obtained using the DSS technique for finite number of time slicesM
and extrapolating the data toM→`. The three lines correspond to
h=0,0.5,1, from bottom to top. Lower panel: Static phase diagram
for the p=3 model obtained using the same numerical method. The
continuous line(dashed line) indicates a second order(first order)
phase transition. The critical lines continue below the lowest value
of T for which we trust the algorithm,T<0.25, to reach a quantum
critical point atT=0.
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The difference between the asymptotic values obtained using
these two extrapolations is of the order of 10%. The last
three points, represented by stars, are the result of the DSS
for M =14,15,16. It can be seen that they fall nicely on the
1/M2 extrapolation curve obtained for the smaller values of
M thus supporting the results of the 1/M2 extrapolations that
we shall use hereafter.

The same method can be used to determine the diagonal
order parameter,qdstd. Since the latter is only known on the
imaginary-time grid 0,b" /M ,2b" /M ,¯ ,b" and this de-

pends onM, we first perform a spline interpolation of the
data for each value ofM and use the interpolated curves as
imput for the polynomial extrapolation described earlier.

The method is illustrated in the upper panel of Fig. 3
where we show the diagonal order parameterqdstd as a func-
tion of t at constant temperature and transverse magnetic
field for the p=3 model. Data for six values ofM, M
=8,¯ ,13, are represented by the symbols and the lines go-
ing through them represent the spline interpolations. The
lowest curve is the result of the extrapolation toM→`.

FIG. 5. Free energy density,f̄, entropy,s̄, and
susceptibility, x, as functions of the transverse
field, G, for the p=3 model atT=0.5.Ts

* for
three values of the coupling to the bath,h
=0,0.5,1. The continuous(dashed) line corre-
sponds to the paramagnetic(glassy) phase. The
entropy and susceptibility are continuous at the
transition indicating a second order phase
transition.
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The method of Goldschmidt and Lai19 just described is
simple to implement and very efficient but it is limited to
relatively high temperatures as the extrapolation becomes
less and less reliable as the temperature decreases.

B. Static phases

Let us first discuss the effect of the environment on the
static phase diagram of thep=2 (SK) and pù3 quantumS
=1/2 spin models. The spin-glass disorder-averaged free-
energy densities are obtained using the one-step RSBAnsatz

discussed in Sec. II. We discuss the limits of validity of this
Ansatzlater.

As in other disordered quantum spin models15–17,22 two
paramagnetic solutions coexist. As in the sphericalp-spin
model coupled to a bath the one labeled PM2 in Fig. 1 can be
discarded since its entropy becomes negative at sufficiently
low temperatures. Thus, we do not discuss it further in this
paper.

The critical linesTs,Gsd separating the paramagnetic(PM)
and spin-glass(SG) phases is determined by the values of the
pairssT,Gd where the physical paramagnetic(called PM1 in

FIG. 6. Free energy,f̄, entropy,s̄, and suscep-
tibility, x, as function of the transverse field,G,
for thep=3 model atT=0.3,Ts

* for three values
of the coupling to the bath,h=0,0.5,1. The con-
tinuous(dashed) line corresponds to the paramag-
netic (glassy) phase. The entropy and susceptibil-
ity are discontinuous at the transition indicating a
first order phase transition.
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Fig. 1) and spin-glass free-energy densities cross.
We show in the upper and lower panels of Fig. 4 the static

critical line in the sT,Gd plane separating a highT, high G
PM from a lowT, low G SG for thep=2 andp=3 models,
respectively. The three curves in each figure correspond to
sh=0d and two nonzero couplingssh=0.5,1d from bottom to
top.

For both models, the classical transition temperature,
Ts

class, corresponding toGs→0, remains unchanged by the
coupling to the quantum heat reservoir. This value isTs=J
for whenp=2 (Ref. 23) and it coincides with the one given
by Gross and Mézard,Ts<0.67, for the classical problem
with p=3.32

For the three values ofh, the static critical transverse
field, GssTd, is a decreasing function ofT, which is consistent
with the fact that quantum fluctuations tend to destroy the
glassy phase. We also see from the figures that the coupling
to a quantum thermal bath favors the formation of the glassy
phase: the coupling to the environment effectively reduces
the strength of the quantum fluctuations that tend to destroy
it. For any value of the temperature that satisfiesT,Ts

classthe
extent of the spin-glass phase is larger for stronger couplings
to the bath. Moreover, we observe that the effect of the bath
is stronger for lower temperatures.

When p=2 the transition is always continuous and
second-order thermodynamically. Forp=3 instead, as in the
spherical case16,17,10 and the isolated quantumS=1/2
model,15 an interesting change from a second-order to a first-
order transition appears. We demonstrate these statements by
displaying in Figs. 5 and 6 the behavior of the free-energy
density, entropy, and susceptibility of thep=3 S=1/2 spin
model as a function of the transverse field forT=0.5.Ts

*

andT=0.3,Ts
* .

At sufficiently high temperatures,TùTs
* , one finds a spin-

glass solution for increasing transverse fields until the break-
point m reaches the valuem=1. The valuessT,Gd wherem
=1 coincides with the ones obtained by analyzing the cross-
ing of the free-energy densities of the paramagnetic and spin-
glass solutions. Thus, for the chosen temperatureTùTs

* this
is the critical transverse field. Even if the Edwards-Anderson
parameter,qea, and the diagonal element,qdstd, are nonzero
at this point in parameter space, one can check, as shown in

Fig. 5, that the entropy and susceptibility do not show a
jump. Thus, forTùTs

* the transition is discontinuous[due to
the jump in qea and qdstd] but of second order thermody-
namically.

The situation is different at lower temperatures. In Fig. 6
we show the free energy, entropy and susceptibility of the
p=3 S=1/2 model forT=0.3,Ts

* . In this case, the point in
which the free-energy of the paramagnetic and spin-glass
solution cross corresponds tom,1 and as shown in the fig-
ure this leads to a discontinuity of the entropy and suscepti-
bility. In this case, the transition is discontinuous and first-
order thermodynamically.

In Fig. 7 we show the dependence ofqea and m on the
critical temperatureTs for three values of the coupling to the
bath. The model is again thep=3 quantumS=1/2spin glass.
As already mentioned we observe that for all temperatures
qea is different from zero, leading to a discontinuous phase
transition.m equals one forTsùTs

* but m,1 for TsøTs
* .

The figure also shows thatTs
* decreases with increasing cou-

pling to the bathh. Again, this result is reminiscent of what
was found in the spherical case.10

C. Stability of the one-step static solution

In order to study the stability of the one-step solution we
evaluated the replicon eigenvaluelR on the values of the
order parameters andm obtained from the static solution, and
we searched for the parameterssT,Gd such thatlR vanishes.
In the classical limit this yields Gardner’s classical critical
temperature that takes a rather low value,TGsG=0d<0.25.28

Since we expect to find a decreasing value of the instability
temperature with the strength of the transverse field, we need
to control the numerical algorithm forT,0.25. Even if this
might seem, at first sight, impossible, we managed to obtain
sensible results keeping reachable values ofM, M ø13,
since the small values of the transverse field compensate the
large value ofb in the conditionbG /M !1.

First, we analyzed thep=2 case that corresponds to the
SK model in a transverse field. In the absence of the envi-
ronment we found that the one-step RSB solution is not
stable in the full spin-glass phase supporting the idea that the
solution to the statics of this model needs a full RSB scheme,

FIG. 7. Dependence ofm and
qea on the critical temperature
TssG ,hd for thep=3 model. Three
values of h are considered,h
=0,0.5,1. For increasing values
of h the interval in whichm=1
increases and, hence, the region
where a thermodynamic first order
transition occurs decreases.
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just as in its classical limit and in contrast to recent claims in
the literature.33

In Fig. 8 we compare the static critical linesTs,Gsd as
found from the one-step RSBAnsatz, with Gardner’s line of
instability for thep=3 model. We see that the region where
the one-step RSB staticAnsatzis not stable is quite small.
Since we only trust the extrapolation from low values ofM
to M→` above temperatures of the order ofT<0.1, we do
not explicitly extrapolate the instability line to lower tem-
peratures. Nevertheless, the existing data suggest that in the
zero temperature limit the static critical transverse field,Gs,
and Gardner’s critical field,GG, do not coincideGssTs

=0d.GGsTG=0d.

D. The dynamic transition

As already explained in Sect. II the value ofm found by
setting the replicon eigenvalue to zero leads to different
equations that encode some information about the nonequi-
librium relaxation dynamics of the system. Using this pre-
scription we obtained, for thepù3 models a different criti-
cal line that lies above the static transition. This result is
similar to those found in a series of other classical25 and
quantum15–17 problems. In Fig. 9 we compare the static and
marginal critical lines for thep=10 quantumS=1/2 model.

We chose a larger value ofp to make the difference between
the two lines easier to visualize. The glassy static region is
smaller than the glassy region determined by the marginality
condition. When approaching the glassy phase from any di-
rection in parameter space, the dynamic transition, associated
to the line of marginal stability, occurs before the static one.
As on the critical static line, the curve determined with the
marginal stability criterion is made of two pieces, on one of
them the transition is of second-order(indicated with a solid
line in Fig. 9) and on the other the transition is of first-order
(indicated with a dashed line on the same figure). The first-
order nature of the dynamic transition is displayed by, for
instance, a jump in the asymptotic value of the averaged
internal energy. The marginal tricritical point occurs at
higher temperature than the static one.

The external noise also has a strong effect on the dynamic
critical line. The stronger the coupling to the environment
(larger value ofh), the larger the spin-glass region in the
phase diagram. This is also shown in Fig. 9 where a couple
of curves, corresponding toh=0 andh=0.5 are drawn(see
the caption in the figure for more details).

Finally, let us mention that there is an empirical relation
between the value of the parameterm as found from the
marginality condition and how the fluctuation-dissipation
theorem is modified in the real time nonequilibrium relax-

FIG. 8. Comparison between
the static critical linesTs,Gsd and
Gardner’s instability linesTG,GGd
for the p=3 model withh=0.

FIG. 9. Comparison between the static and
marginal critical lines for thep=10 model. The
solid lines represent second order transitions and
the dashed lines first order ones. The set of curves
with Ts

class<0.6 (thin lines) are the static transi-
tion lines forh=0 (below) andh=1 (above); the
set of curves withTs

class<0.82 (bold lines) corre-
spond to the dynamic transition forh=0 (below)
andh=1 (above).
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ation of the quantum model.9,10 Using this relation and inter-
preting then the parameterm/T as an effective temperature34

we find that the modification of the fluctuation-dissipation
theorem, and hence,Teff, depend on the strength of the cou-
pling to the bath.

IV. CONCLUSIONS

In this paper we studied the effect of an Ohmic quantum
bath on the statics and dynamics of quantum disorderedS
=1/2 spin models of mean-field type. We found that the
coupling to the environment favors the appearance of the
spin-glass phase reducing the strength of the quantum fluc-
tuations that tend to destabilize it. As in the case of the
spherical model10,11 the phase transition is always second
order forp=2. Forpù3 there exists a tricritical temperature
T! below which quantum fluctuations drive the transition
first order.T! decreases with the strength of the coupling to
the bath. Forpù3 a dynamic transition precedes the equi-
librium phase transition. The coupling to the bath also stabi-
lizes the dynamic glassy phase.

The physical origin of these effects is very simple: friction
and spin-spin interactions separately counteract the trans-
verse field tending to suppress quantum fluctuations. When
the two effects are simultaneously present they reinforce
each other.

It would be interesting to check if the same tendency to
ordering appears in macroscopic spin models in finite dimen-
sions. One could attempt to study this problem in the context
of frustrated spin magnets or the much studied, numerically
and analytically, quantumS=1/2 spin chain with and with-
out disorder. This problem is of interest for the possible
implementation of quantum computers where the interaction
of the system with its environment needs to be controlled.
The effect of an environment on the properties of Griffith
phases has also been the focus of a hot debate.35 We expect
to report on these problems in the near future.
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