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1. Introduction

The study of noncommutative solitons and instantons — finite energy or finite action

solutions to the classical equations of motion of noncommutative field theories — has

been a field of intense activity after the revival of interest in these theories in connection

with strings and brane dynamics (see [1]–[3] and references therein). In fact, the first

explicit instanton solutions that were constructed in four dimensional Yang-Mills theory [4]

strongly influenced developments in string quantization [5]. Concerning solitons, not only

the noncommutative counterparts of vortex, monopoles and other localized solutions in

ordinary space were constructed but regular stable solutions which become singular in the

commutative limit were also discovered [6]–[21].

Most of these solitons correspond to selfdual/anti-selfdual (BPS) solutions which are

more simple to obtain than those arising from the Euler Lagrange (EL) equations of motion.

Moreover, in even dimensional spaces, calculations can be simplified by exploiting the

connection between noncommutative Moyal product in configuration space and a Hilbert

space representation which realizes noncommutativity in terms of creation and annihilation

operators acting on a Fock space.

Among the BPS soliton solutions that have been obtained in this way, particular

interest has attracted the construction of noncommutative BPS vortices — static solutions

of the noncommutative version of the abelian Higgs model, both when the gauge field

dynamics is governed by Maxwell and/or Chern-Simons actions [8]–[15]. The moduli space

of these BPS vortices has been studied in detail [15, 20] showing an interesting phase

diagram with a critical point at some value of the dimensionless parameter resulting from

the combination of the gauge coupling constant, the scalar expectation value and the

noncommutative parameter.

It is the purpose of the present work to investigate solutions to the EL equations of

motion of the noncommutative Higgs model. That is, to find, apart the already known BPS
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and non-BPS noncommutative vortices, new non-BPS solutions which are the noncommu-

tative counterpart of the regular vortices originally introduced by Nielsen and Olesen [22]

and numerically constructed in [23].

The paper is organized as follows. In section 2 we present the model and establish our

conventions. Then, in section 3, we propose an ansatz to solve the equations of motion in

Fock space reducing the problem to the solution of a system of two coupled second order

recurrence relations. Via the Moyal correspondence the solutions can be also expressed

in ordinary space as an expansion in Laguerre polynomials with coefficients that can be

computed numerically. We discuss in detail in this section the properties of vortex solutions

with positive magnetic flux and compare them with those of the commutative case. In

section 4 we present the analogous discussion for negative magnetic flux. Finally, we

summarize our results and conclusions in section 4.

2. The noncommutative abelian Higgs model

We start by defining the Moyal product in four dimensional space-time in the form

φ(x) ∗ χ(x) = exp

(

iθµν

2
∂xµ∂

y
ν

)

φ(x) ∗ χ(y)
∣

∣

∣

∣

y=x

(2.1)

with θµν a real antisymmetric constant matrix. Since we are looking for static solutions

we shall take θ0i = 0 (i, j = 1, 2, 3) and bring θij into its canonical form so that

θ12 = θ , θ13 = θ23 = 0 . (2.2)

Dynamics of the model is governed by the lagrangian density

L = −1

4
Fµν ∗ Fµν +Dµφ ∗Dµφ− λ

4
(φφ− η2)2 (2.3)

where

Fµν = ∂µAν − ∂νAµ − i(Aµ ∗ Aν −Aν ∗ Aµ) (2.4)

Dµφ = ∂µφ− iAµ ∗ φ . (2.5)

Here Aµ is a U(1) gauge field and φ = φ1 + iφ2 a complex scalar. Notice that the gauge

coupling constant has been rescaled to 1 and the covariant derivative has been chosen

as in the “fundamental” representation. Other cases (“antifundamental” and “adjoint”

representations) can be handled in a similar way.

Introducing complex variables

z =
1√
2
(x1 + ix2) , z̄ =

1√
2
(x1 − ix2) (2.6)

the equations of motion read

DzDz̄φ+Dz̄Dzφ =
λ

2
(φφ− η2)φ

Dz̄Fzz̄ = jz̄ (2.7)
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where

Az =
1√
2
(A1 − iA2) , Az̄ =

1√
2
(A1 + iA2)

jz̄ = −i
(

(∂z̄φ) ∗ φ− φ ∗ (∂z̄φ)
)

− (Az̄ ∗ φ) ∗ φ− φ ∗ (φ ∗ Az̄) . (2.8)

Noncommutative field theories in two dimensional space can be also handled by intro-

ducing annihilation and creation operators â and â† acting on a Fock space,

â =
1√
θ
z , â† =

1√
θ
z̄ (2.9)

[â, â†] = 1 (2.10)

in terms of which one takes a field φ(z, z̄) as an operator Ôφ(â, â
†). The identity

Ôφ(â, â
†)Ôχ(â, â

†) = Ôφ∗χ(â, â
†) (2.11)

shows that the ∗ product in configuration space becomes the product of operators in Fock

space. Moreover, integration in the plane (x1, x2) becomes a trace,
∫

d2xF (x1, x2) = 2πθTr ÔF [â, â
†] (2.12)

With the conventions above, derivatives in the Fock space are given by

∂z = −
1√
θ
[â†, ] , ∂z̄ =

1√
θ
[â, ] (2.13)

so that the EL equations of motion (2.7) become the operator equations

1

θ

(

[â†, [â, φ̂]] + [â, [â†, φ̂]]
)

− i√
θ
[â†, Âz̄φ̂] +

i√
θ
Âz[â, φ̂]+ (2.14)

+
(

ÂzÂz̄ + Âz̄Âz

)

φ̂+
i√
θ
[â, Âzφ̂]−

i√
θ
Âz̄[â

†, φ̂] = −λ
2
(φ̂φ̂− η2)φ̂

1

θ

(

[â, [â†, Âz̄ ]] + [â, [â, Âz ]] + i
√
θ[â, [Âz , Âz̄] + i

√
θ[Âz̄, [Âz, Âz̄ ]]

)

+ (2.15)

+
i√
θ
([Âz̄ , [â

†, Âz̄ ]] + [Âz̄, [â, Âz]]−
i√
θ

(

[â, φ̂]φ̂− φ̂[â, φ̂]
)

= −(Az̄φ̂φ̂+ φ̂φ̂Az̄)

When

λ = λBPS = 2 (2.16)

— the Bogomol’nyi point — solutions of the “BPS” equations

B = η2 − φ̂φ̂ , Dz̄φ̂ = 0 (2.17)

−B = η2 − φ̂φ̂ , Dzφ̂ = 0 (2.18)

also solve the Euler-Lagrange equations of motion (2.14)–(2.15) and saturate a lower bound

for the energy (eqs. (2.17) and (2.18) correspond to the dual and self-dual cases respec-

tively). Notice that the BPS point corresponds to the case in which the scalar mass mφ

and the vector particle mass mA ratio, given by

m2
φ

m2
A

=
λ

2
, (2.19)
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is equals to one. In the Ginzburg Landau version of the theory, the above expression, related

to the ratio of the condensate coherent length and magnetic penetration length signals the

boundary between type-I and type-II superconductors. In the first case, λ < λBPS the range

of matter self-interaction exceeds that of the electromagnetic one leading to an attractive

vortex-vortex interaction while for the second case the opposite is true.

As mentioned above, exact vortex solutions to the selfdual eqs. (2.17) have been con-

structed for the whole range 0 ≤ θη2 ≤ ∞ [12]. They are the counterpart of regular

vortex solutions to Bogomol’nyi equations in the commutative case and in fact one can

see that they reduce to the exact solutions found in [24] in the θ → 0 limit. Concern-

ing the antiselfdual case (2.18), it has been shown in [15] that solutions exist only in the

range 0 ≤ θη2 ≤ 1. At the critical point θη2 = 1, the BPS solution in this anti-selfdual

case coincides with the fluxon solution discovered in [9]. As for non-BPS solutions to the

Euler-Lagrange equations (2.7), to our knowledge, the only reported explicit vortex solu-

tions correspond to non-BPS fluxons [11, 15], which exist only in the anti-selfdual case, are

unstable in the range 0 ≤ θη2 < 1 and become singular in the commutative limit.

3. Vortex solutions for positive flux

Vortex configurations in commutative space take the form [22]

φ = f(zz)
zM

(zz)
M
2

Az = −iM
d(z̄z)

z
(3.1)

φ = f(zz)
z̄M

(zz)
M
2

Az = iM
d(z̄z)

z
(3.2)

for magnetic flux Φ proportional to +M and −M respectively. Inspired in (3.1)–(3.2),

we propose the following ansatz in order to construct exact solutions to the equations of

motion (2.14)–(2.15) for arbitrary values of the noncommutative parameter θ and Φ ≥ 1,

φ̂ = η
∑

n

fn|n〉〈n+M |

Âz =
i√
θ

∑

n

(tn +
√
n+ 1)|n+ 1〉〈n| (3.3)

(We leave for the next section the case of negative flux). Plugging the ansatz (3.3) into

eqs. (2.15) we get the following recurrence relations for coefficients f1 and t1,

2
(

tnfn+1

√
n+ 1 +M + tn−1fn−1

√
n+M

)

+ (t2n + t2n−1 + 2n+ 2M + 1)fn =

= −θη
2λ

2
fn(fn

2 − 1) (3.4)

(t2n+1 − 2t2n + t2n−1)tn = θη2
(

2fnfn+1

√
n+ 1 +M + (fn

2 + fn+1
2)tn

)

(3.5)

f1 = − f0

2t0
√
1 +M

(

(1 + 2M) + t20 +
θη2λ

2
(f0

2 − 1)

)

t21 = 2t20 + θη2
(

(f21 + f20 )t0 + 2

√
1 +Mf0f1

t0

)

(3.6)
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Given a value for f0 and t0, one can then determine all f ′ns and t
′
ns from eqs. (3.4)–(3.6).

The correct values for f0 and e0 should make

f2n → 1 , tn → −
√
M + n+ 1 as n→∞ (3.7)

which, as can be seen from ansatz (3.3), correspond to a scalar field going to its v.e.v. and a

gauge field going to a pure gauge for r→∞ (the radial variable r is related to the number

operator N̂ in Fock space).

Once all f ′ns and t′ns are calculated, one can compute all relevant quantities. In par-

ticular, the vortex magnetic field can be computed from

−iF̂zz̄ ≡ B̂ =
1

θ

∑

n

Bn|n〉〈n| (3.8)

where

B̂ =
1

θ

∑

n

Bn|n〉〈n| (3.9)

and

B0 = t20 − 1

Bn = t2n − t2n−1 − 1 , n ≥ 1 (3.10)

One can easily calculate (without the need to use the equations of motion) the magnetic

flux Φ

Φ = 2πθTr B̂ = 2πM (3.11)

Expressions in Fock space can be pulled back to configuration space by using the Moyal

mapping. For instance, using the explicit formula for |n〉〈n| in configuration space in terms

of Laguerre polynomials Ln one ends with

B(r) =
2

θ

∑

n

(−1)nBn exp
(

−r
2

θ

)

Ln

(

2r2

θ

)

(3.12)

Using the expression for the energy-momentum tensor,

T00 = 2πθTr

(

1

2
B̂2 + 2DzφDzφ+ 2Dz̄φDz̄φ+

λ

4

(

φφ− η2
)2
)

(3.13)

one can write the energy of the vortex configuration in terms of coefficients f ′ns and t′ns as

E(M) = 2π
∑

n

(

1

2θ
(t2n− t2n−1− 1)2+ η2

(

(

fntn + fn+1

√
n+M+1

)2
+ (3.14)

+
(

fn+1tn+ fn
√
n+M+1

)2
)

+
λθη4

4
(fn

2− 1)2
)

For simplicity, we shall first discuss the M = 1 case and then comment the case

of arbitrary positive integer M . Exploring the whole range of θη2 and λ one finds that

vortex solutions exist for all the values of λ and θη2 considered. For λBPS = 2, the
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1 2 3 4 5 6 7
r

0.1

0.2

0.3

0.4

B

Figure 1: The M = 1 vortex magnetic field B as a function of r (in units of η2) for θη2 = 2 and

different values of λ: the dotted line corresponds to λ = 0.5, the solid one to λ = 2 (the BPS point)

and the dashed one to λ = 8.

1.5 2 2.5 3 3.5 4
λ

0.9

0.95

1.05

1.1

1.15
E /2πη2

Figure 2: Energy per unit length (in units of η2) as a function of λ: the dashed line corresponds

to θη2 = 0.1, the solid one to θη2 = 0.5 and the dotted one to θη2 = 2.

solution coincides with that obtained in [12] by solving the BPS equations. Concerning

the commutative limit (small-θ regime) we reobtain the exact solution found in [24] for

λ = λBPS as well as the variational results obtained in [23] for 1 ≤ λ ≤ 3. As an illustration,

we show in figure 1 the M = 1 vortex magnetic field as a function of θr for θη2 = 2, and

different values of λ. Other ranges of parameters give similar behavior.

In figure 2 we show the energy E(1), as a function of λ, for different values of θ. The

energy of all solutions coincide at Bogomol’nyi point (λ = 2) as already established in [12],

1

η2
E(1)

[

λ = λBPS; θη
2
]

= 2π (3.15)

Outside the BPS point the energy is θ dependent and one finds, on the one hand

δE1(λ, θ)

δθ
> 0 λ < λBPS (3.16)

δE1(λ, θ)

δθ
< 0 λ > λBPS (3.17)

– 6 –
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1.5 2 2.5 3 3.5 4
λ

1.8

1.9

2.1

2.2

E /2πη2

Figure 3: The energy of an M = 2 vortex as a function of λ (solid line) compared with that

corresponding to twice the energy of an M = 1 vortex (dashed line), for θη2 = 2.

On the other hand, one also has in the whole θ range

δE1(λ, θ)

δλ
> 0 (3.18)

The calculations described above can be easily extended to the search of vortex so-

lutions with arbitrary positive flux M . The resulting field configurations for M > 1 are

qualitatively similar to the M = 1 case.

Nevertheless, it is important in this case, to compare the energy of the M -vortex E (M)

with E(1). We show in figure 3 the energy of a M = 2 vortex compared with twice the

energy for an M = 1 vortex as a function of λ for fixed θ (θη2 = 2). In complete analogy

with the commutative case, there is a crossover at the Bogomol’nyi point λBPS signaling

that for λ > λBPS it is energetically favorable for a M = 2-vortex configuration to decay

into two M = 1 vortices. This behavior indicates that, as in the commutative case, vortices

attract (repel) each other for values of the coupling constant below (above) the Bogomol’nyi

point. This behavior remains the same for all values of θη2 investigated indicating that

the character of attraction/repulsion is unaffected by the value of the parameter θη2. Of

course, at λ = λBPS vortices do not interact (the stress tensor vanishes [24]). In this case

one has E(2)[λBPS] = 2E(1)[λBPS].

Let us end this section with a comment about the accuracy of our numerical compu-

tations. When solving the recursive relations that define the solutions for the coefficients

fn and tn, we have truncated the Fock space to a given value of n. Since the recursive

relations are highly nonlinear, it is very difficult to have a controlled management of the

errors due to that truncation. However, we can have an estimate of the error in the com-

putation of the energy by comparing the numerical result at the Bogol’nyi point λ = λBPS

(for M = 1, 2, for example) with the exact analytical results. We found that for the range

of values of θη2 considered, the error is less than 10−5. Our numerical analysis suggests

that this estimate of the error can be extrapolated to the values of λ considered in the

article.
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4. Vortex solutions for negative flux

Since the noncommutativity of space breaks the parity invariance of the theory, negative

flux solutions cannot be obtained from the positive flux ones by a parity transformation,

as in the commutative case. Negative flux solutions have then to be studied separately.

Thus, instead of ansatz (3.3) one has to look, in the case of negative magnetic flux, for

configurations in the form

φ̂ = η
∑

n

fn|n+M〉〈n| (4.1)

Âz =
i√
θ

∑

n

(tn +
√
n+ 1)|n+ 1〉〈n| (4.2)

f2n → 1 , tn → −
√
M + n− 1 as n→∞ (4.3)

where M is again a positive integer, M > 0, this leading to a negative magnetic flux

Φ/(2π) = −M .

For simplicity, we present in detail the case M = 1 but the analysis goes the same for

arbitrary M . Using (4.2), the equations of motion (2.15) lead to the recurrence relations

for n > 1

2
(

tn+1fn+1

√
n+ 1 + tnfn−1

√
n
)

+
(

t2n+1 + t2n + 2n+ 1
)

fn =

= −θη
2λ

2
fn(fn

2 − 1) (4.4)

(t2n+1 − 2t2n + t2n−1)tn = θη2
(

2fnfn−1
√
n+ (fn

2 + fn−1
2)tn

)

(4.5)

f1 = − f0
2t1

(

1 + t20 + t21 +
θη2λ

2
(f0

2 − 1)

)

t1 =
√

2t20 + θη2f20 (4.6)

Again, once all f ′ns and t
′
ns are calculated, one can compute the vortex magnetic field,

magnetic flux and energy (since the ansatz for the gauge field is the same as in the positive

flux case, the magnetic field is again given by eqs. (3.9), (3.10).

The expression for the energy for a Φ/(2π) = −1 configuration takes the form

E(M) = 2π
∑

n

(

1

2θ

(

t2n − t2n−1 − 1
)2

+ η2
(

(

fntn+1 + fn+1

√
n+ 1

)2
+ (4.7)

+
(

fntn + fn−1
√
n
)2
)

+
λθη4

4

(

fn−1
2 − 1

)2
)

(the summation goes from n = 0 to n =∞ with the proviso that coefficients with negative

subindex vanish).

As shown in [9, 11] and [15], there exist in this case a solution with magnetic flux

Φ/2π = −1 (a “fluxon”) of the form,

φfl = η
∑

n=0

|n+ 1〉〈n|

Aflz =
i√
2θ

∑

n=0

(√
n+ 1−

√
n
)

|n+ 1〉〈n| (4.8)

– 8 –



J
H
E
P
1
1
(
2
0
0
3
)
0
4
9

1 2 3 4 5
r

0.25

0.5

0.75

1

1.25

1.5

-B

Figure 4: The magnetic field as a function of r for θη2 = 0.1 and different values of λ: the dotted

line corresponds to λ = 0.5, the solid one to λ = 2 and the dashed one to λ = 8.

Indeed, within this ansatz

−Bfl =
1

θ
|0〉〈0|

Dzφ
fl = Dz̄φ

fl = 0

η2 − φflφ̄fl = η2|0〉〈0| (4.9)

By direct substitution, it is then immediate to show that this configuration satisfies the EL

equations of motion for all value of the parameters. The energy of the fluxon solution (4.8) is

Efl

2πη2
=

1

2

(

1

θη2
+
λ

2
θη2
)

(4.10)

Nevertheless, a more careful study reveals that this solutions are locally stable only for

θη2 > 1. Moreover, they are BPS saturated only when λ = 2 and θη2 = 1 (Note that for

θη2 = 1 and λ = λBPS = 2 the energy does correspond to the BPS bound, Efl = EBPS =

2πη2).

Since BPS solutions still can be found for λ = 2 and θη2 < 1 by considering an ansatz

of the form (4.2) and solving the BPS equation, the question that arises concerns the

existence and properties of non BPS solutions for θη2 < 1. In order to answer this question

we have investigated the numerical solutions to the recurrence relations in different ranges

of θη2 and λ.

As an illustration, we show in figure 4 the magnetic field as a function of r for θη2 =

0.1 and different values of λ. We have calculated numerically the magnetic flux for this

configuration confirming that it corresponds to one unit of flux.

One can compare the values for the energy given in the table 1 with those resulting from

formula (4.10) for fluxons to conclude that the energy of the solutions we have presented in

the range 0 ≤ θη2 < 1 is lower than that of the (unstable) non-BPS fluxon. Moreover, the

energy of our vortex solution tends to the value of the fluxon solution energy for θη2 → 1.

We show in figure 5 the behavior of fn as θη2 → 1. Indeed at θ = 1 all f ′ns and t′ns for our

solutions coincide with those of the fluxon solutions which, from that critical value of θ on

remain as the only non-trivial solutions.

– 9 –
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θη2 E[λ = 0.5] E[λ = 2] E[λ = 8]

0.1 0.751 1.000 1.400

0.3 0.735 1.000 1.572

0.5 0.716 1.000 1.801

0.8 0.675 1.000 2.206

0.9 0.654 1.000 2.352

θη2 EΦ=−1 EΦ=1

0.1 0.755 0.762

0.3 0.735 0.775

0.5 0.716 0.785

Table 1: The energy of vortex with mag-

netic flux Φ/2π = −1 for different values of
θη2 and λ.

Table 2: Vortex and anti-vortex energies (in

units of 2πη2) for λ = 0.5.

5 10 15 20 25 30
n

0.97

0.975

0.98

0.985

0.99

0.995

fn

Figure 5: The coefficients fn in the Higgs field development for the Φ/2π = −1 solutions (4.1)
as a function of n for different values of θ. Size of dots decreases as θη2 goes from θη2 = 0.1 to

θη2 = 0.9.

It is interesting also to notice that the asymmetry between vortex and anti-vortex

configurations manifests in the energy splitting between vortex-antivortex configurations

for non zero values of θη2 as shown in table 2. Moreover, the behavior of the energy with

θ is the opposite: for the vortex the energy increases (decreases) with θ if λ < 2 (λ > 2)

while for the antivortex the energy decreases (increases) with θ if λ < 2 (λ > 2).

5. Summary and discussion

In this paper we have examined vortex solutions in the abelian Higgs model in non-

commutative space, focussing on the properties of these solutions beyond the BPS point

previously considered in [8, 11, 12, 15].

Previous to our investigations, the only known non-BPS solutions were fluxons [9, 11],

negative flux solutions which are stable only for θη2 > 1. These configurations, even though

they are non-BPS in the sense that they do not satisfy the duality equations, share some

properties with BPS solutions, namely, their energy saturates a topological bound and is

linear in the flux. Moreover, in the θ → 0 commutative limite they correspond to singular

configurations (with a δ-function source).

We have constructed here non-BPS solutions of positive flux with arbitrary values

θη2 and also negative flux solutions, in this last case in the range 0 ≤ θη2 < 1. Unlike
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the fluxon case mentioned above, no simple analytical expressions of these solutions are

available. One has instead expressions like eq. (3.12) so that the properties of the solutions

have to be investigated numerically (as it happens in the commutative case, both for BPS

and non-BPS solutions [24]–[23]).

The solutions presented here behave in most ways as smooth deformations of vortices

in commutative space. For instance, their energy is an increasing function of λ and is a

linear function of the flux only at the BPS point. Indeed, we have shown that E (M) −
ME(1) > 0 for λ > λBPS suggesting that in this case, the M -vortex configuration should

be unstable towards the formation of a Abrikosov-type vortex lattice in analogy with type-

II superconductors. Notice though that solutions in non-commutative space differ from

solutions in ordinary space time as a result of parity breaking which manifests itself as a

breaking of symmetry between vortex and anti-vortex configurations. We have illustrated

this fact by comparing the energies of E(1) and E(−1) as a function of θ.
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