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•  Clase 1. Introducción 

•  Clase 2. Registros extracelulares y Spike sorting. 

•  Clase 3. Procesado de información visual. 

•  Clase 4. Percepción y memoria. 

•  Clase 5. Decodificación – Teoría de la información. 

•  Clase 6. Electroencefalografía – Análisis de tiempo-frecuencia y Wavelets. 

•  Clase 7. Potenciales evocados – Análisis de ensayo único. 

•  Clase 8. Dinámica no-lineal – Sincronización. 

Extracellular recordings

Nature Reviews Neuroscience 10: 173-185; 2009

Gold et al 2006
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Simulation of extracellular recordings

Juan Martinez Gomez
Martinez et al. J. Neuroscience methods, 2009
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A more detailed model...

Luis Camuñas Mesa
Neural Computation,  2013

www.le.ac.uk/csn/neurocube

Generation of extracellular potentials 

•  Dendritic surface ten to 
twenty times that of the 
soma 

•  Only a small portion of the 
current flows across the 
soma 

 
•  The neuron branching has 

an effect on the 
extracellular potential 

Rall 1962 

Distribution of extracellular potential 

Rall 1962 

Line source approximation 

Gold et al 2006 



















NeuroCube









 

Figure 1.  

 

 

Figure 2.  

 


























 

Figure 5.  

Electrode design
“Despite this prevalence [of the use of 
microelectrodes for single cell recordings] 
there remains a good deal of mystery about 
how best to make these electrodes and how 
to interpret the extracellular potentials that 
they record. The attitude of many practical 
users is the sensibly pragmatic one of the 
biological assay. When one finds some 
method of making microelectrodes that 
successfully isolate units in a given neuronal 
structure, one ‘freezes the design’ and 
attends to the more important task of 
collecting neural data” 

D. Robinson, 1968 
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Spike sorting

Scholarpedia, 2007

Window discriminators Cluster cutting



Disadvantages:
– Supervised 

• not practical for many channels, may need readjustment

– Hard to set if spike shapes overlap
– May miss sparsely firing neurons

Our goal
– Algorithm for automatic detection and sorting. 
– Relatively fast.
– Improve both detection and sorting in comparison 

with previous approaches. www.le.ac.uk/csn

Wave_clus

Neural Computation 2004

Raw data

Filtered data
0)

Feature extraction
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Spike detection

Neural Computation 2004
Scholarpedia 2007
Nat. Rev. Neurosci 2009
Current Biology 2012

• Use of offline noncausal filters

  No phase distortions!

0 - Filtering

µV

Datapoint

Cluster 1 Cluster 2 Cluster 3

noncausal
300-3000Hz
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300-3000Hz

causal
600-3000Hz

Filtering distortions

Quian Quiroga. J.Neuroscience Methods 2009
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Raw data

Filtered data
0)

Feature extraction

II)

Clustering

III)

I)

Spike detection

I - Spike detection

• Set an automatic amplitude threshold

• Spikes are aligned after interpolation 
with cubic splines.
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Simulated dataEx. 2 Std estimation

Locust data (from Ofer Mazor & Giles Laurent)

Scholarpedia 2007

• Wavelet Transform: is a time-frequency 
decomposition of the signal with optimal resolution 
both in time and frequency.

• Key idea: a few wavelet coefficients 
will be able to separate the different 
spike classes.

II - Feature extraction: wavelets



Wavelet coefficients
Ex 1

Ex 2

II a - Selection of wavelet coefficients: 
KS test of Normality

Good separation

No separation

Distribution of a given 
Wavelet coefficient

II a - Selection of wavelet coefficients: 
KS test of Normality

Ex 2

Projections into the feature space

KS criterion

STD criterion

First 3 PCs

Misses

1/507 (0.2%)

134/507 (26.4%)

32/507 (6.2%)

Ex 2

Another example… with wavelets. All projections…

Clusters separate clearly
in some projections 



… and now with PCA

III – Super-paramagnetic clustering

• Automatic clustering algorithm based on 
ideas from statistical mechanics.

• It’s based on nearest-neighbor’s 
interactions.

• Clusters don’t need to have a well-defined 
center, low variance or a Gaussian 
distribution.

Blatt et al. Phys. Rev. Lett. 76: 3251-3254; 1996.
Blatt et al. Neural Computation 9: 1805-1842; 1997.
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Quian Quiroga et al. Neural Computation, 2004 



Simulated data
Ex 
1

Misses

 3/521

Simulated dataEx. 2

Misses

  1/507

Misses

 32/507

Misses

134/507

Misses

330/507

Simulation results Example # Nr. of 

[noise level] Spikes

Ex. 1 [0.05] 2729

         [0.10] 2753

         [0.15] 2693

         [0.20] 2678

         [0.25] 2586

         [0.30] 2629

         [0.35] 2702

         [0.40] 2645

Ex. 2 [0.05] 2619

         [0.10] 2694

         [0.15] 2648

         [0.20] 2715

Ex. 3 [0.05] 2616

         [0.10] 2638

         [0.15] 2660

         [0.20] 2624

Ex. 4 [0.05] 2535

         [0.10] 2742

         [0.15] 2631

         [0.20] 2716

Average 2662

Quian Quiroga et al. Neural Computation, 2004 

SPC

Wavelets PCA Spike shape Feature set

1 1 0 863

5 17 0 833

5 19 0 2015 (2)

12 130 24 614

64 911 266 1265 (2)
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0 7 3 619
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8 946 (2) 970 (2) 1987 (1)

443 1716 (2) 1709 (1) 2259 (1)

1462 (2) 1732 (1) 1732 (1) 1867 (1)

232 1092 873 1641

K - means

Wavelets PCA

0 0

0 0
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0 0

2 53
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154 740

0 1

850 184

859 848

874 1170

686 212
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872 1004

332 371



Real data

Do we need spike sorting?

Epilepsy surgery

detected in this channel, is associated to a single unit

selectively responding to a picture of George Harrison (this

response accounts for 15% of the spikes from this unit, rep-

resenting 3% of the duration of the session). As before, it

would have been impossible to identify this response from

the detected spikes without optimal spike sorting. Figure 4

shows also a multiunit cluster (cluster 1; i.e. a cluster where,

due to low signal to noise ratio, it was not possible to sepa-

rate the contribution of different units) that exhibits

responses to a picture of the patient himself and to one of

his daughter.

Characterization of MTL single-cell responses

In the previous section we have illustrated some of the main

properties of single-cell responses in the human MTL, partic-

ularly how they can selectively increase their firing from a

very low baseline activity. As discussed above, the detection

of these responses is challenging, first, due to the impor-

tance of optimal spike sorting and, second, due to the high

selectivity of the responses and the need to identify which

pictures should be used to trigger the neurons’ firing. The

use of screening sessions together with optimal data
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Fig. 3 Single-unit responses. (a) Spike sorting. The top plot shows 60 s of the high-pass filtered recording (300–3000 Hz) from a microwire

implanted in the left anterior hippocampus (the red solid line is the detection threshold). The bottom part shows all the detected spikes (left) and

five clusters that were identified after sorting the spikes. (b) Raster plots associated to five pictures used during the session (first trial on top; time

zero corresponds to stimulus onset). When all the detected spikes are considered (first row), only the picture of Vladimir Putin elicited a clear

response. However, the response is actually elicited by the single unit associated to cluster 3. Moreover, the raster plots for cluster 5 allow us to

unravel a response to the picture of the Taj Mahal (that was not evident from the detected spikes). This cell fired selectively to this particular stimu-

lus, remaining nearly silent to all the other stimuli.
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detected in this channel, is associated to a single unit

selectively responding to a picture of George Harrison (this

response accounts for 15% of the spikes from this unit, rep-

resenting 3% of the duration of the session). As before, it

would have been impossible to identify this response from

the detected spikes without optimal spike sorting. Figure 4

shows also a multiunit cluster (cluster 1; i.e. a cluster where,

due to low signal to noise ratio, it was not possible to sepa-

rate the contribution of different units) that exhibits

responses to a picture of the patient himself and to one of

his daughter.

Characterization of MTL single-cell responses
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properties of single-cell responses in the human MTL, partic-
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Fig. 3 Single-unit responses. (a) Spike sorting. The top plot shows 60 s of the high-pass filtered recording (300–3000 Hz) from a microwire

implanted in the left anterior hippocampus (the red solid line is the detection threshold). The bottom part shows all the detected spikes (left) and

five clusters that were identified after sorting the spikes. (b) Raster plots associated to five pictures used during the session (first trial on top; time

zero corresponds to stimulus onset). When all the detected spikes are considered (first row), only the picture of Vladimir Putin elicited a clear

response. However, the response is actually elicited by the single unit associated to cluster 3. Moreover, the raster plots for cluster 5 allow us to

unravel a response to the picture of the Taj Mahal (that was not evident from the detected spikes). This cell fired selectively to this particular stimu-
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response accounts for 15% of the spikes from this unit, rep-
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would have been impossible to identify this response from

the detected spikes without optimal spike sorting. Figure 4

shows also a multiunit cluster (cluster 1; i.e. a cluster where,
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rate the contribution of different units) that exhibits
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his daughter.
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Rey et al. Journal of Anatomy 2014
Harris et al. Nature Neurocience 2016



Carlos Pedreira
J. Neuroscience Methods, 2012.

How many neurons can we see?

N = 140

N = 1100
Buzsaki Nat Neurosci 2004

Clase 2. Registros extracelulares y Spike sorting.

A detailed and fast model of extracellular recordings
Luis Camunas-Mesa and Rodrigo Quian Quiroga.
Neural Computation, 25: 1191–1212, 2013

Unsupervised spike sorting with wavelets and superparamagnetic clustering.
Quian Quiroga R, Nadasdy Z and Ben-Shaul Y.
Neural Computation, 16: 1661-1687; 2004.

Spike Sorting. 
Quian Quiroga R.
Scholarpedia 2 (12): 3583. 2007.

Quick guide: spike sorting
Quian Quiroga, R.
Current Biology 22. R45–R46, 2012.

Past, present and future of spike sorting techniques 
Hernan Gonzalo Rey, Carlos Pedreira and Rodrigo Quian Quiroga.
Brain Research Bulletin, 119: 106-117, 2015.
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