cck

Borges. Ficciones de un Tiempo Infinit Artes Visuales / Ciclo de Charlas y Conferencias

Borges y la Memoria (parte I - Funes el Memorioso)

Rodrigo Quian Quiroga Lic. en Física, Dr. en Matemática Aplicada y Dr. en Neurocle

Jueves 4 de agosto, 18.30h - Auditorio 513

Neurociencia de Sistemas

- Clase 1. Introducción
- Clase 2. Registros extracelulares y Spike sorting.
- Clase 3. Procesado de información visual.
- Clase 4. Percepción y memoria.
- Clase 5. Decodificación Teoría de la información
- Clase 6. Electroencefalografía Análisis de tiempo-frecuencia y Wavelets.
- Clase 7. Potenciales evocados Análisis de ensayo único
 - · Clase 8. Dinámica no-lineal Sincronizació

Electrode design

"Despite this prevalence [of the use of microelectrodes for single cell recordings] microelectrodes for single cell recordings] there remains a good deal of mystery about how best to make these electrodes and how to interpret the extracellular potentials that they record. The attitude of many practical users is the sensibly pragmatic one of the biological assay. When one finds some method of making microelectrodes that successfully isolate units in a given neuronal structure, one 'freezes the design' and attends to the more important task of collecting neural data"

D. Robinson, 196

Disadvantages:

- Supervised

- not practical for many channels, may need readjustment
- Hard to set if spike shapes overlap
- May miss sparsely firing neurons

Our goal

- Algorithm for automatic detection and sorting.
- Relatively fast.
- Improve both detection and sorting in comparison with previous approaches.

I - Spike detection

• Set an automatic amplitude threshold

$$T = 4 \cdot median \left\{ \frac{|x|}{0.6745} \right\}$$

• Spikes are aligned after interpolation with cubic splines.

Example # [noise level]	Nr. of Spikes	Wavelets	PCA	SPC Spike shape	Feature set	K - Wavelets	means PCA
[0.10]	2753	5	17	0	833	0	0
[0.15]	2693	5	19	0	2015 (2)	0	0
[0.20]	2678	12	130	24	614	17	17
[0.25]	2586	64	911	266	1265 (2)	69	68
[0.30]	2629	276	1913	838	1699(1)	177	220
[0.35]	2702	483	1926 (2)	1424 (2)	1958 (1)	308	515
[0.40]	2645	741	1738 (1)	1738(1)	1977(1)	930	733
Ex. 2 [0.05]	2619	3	4	2	502	0	0
[0.10]	2694	10	704	59	1893 (1)	2	53
[0.15]	2648	45	1732 (1)	1054 (2)	2199(1)	31	336
[0.20]	2715	306	1791 (1)	2253 (1)	2199(1)	154	740
Ex. 3 [0.05]	2616	0	7	3	619	0	1
[0.10]	2638	41	1781	794	1930(1)	850	184
[0.15]	2660	81	1748 (1)	2131 (1)	2150(1)	859	848
[0.20]	2624	651	1711(1)	2449(1)	2185(1)	874	1170
Ex. 4 [0.05]	2535	1	1310	24	1809(1)	686	212
[0.10]	2742	8	946 (2)	970 (2)	1987(1)	271	579
[0.15]	2631	443	1716 (2)	1709(1)	2259(1)	546	746
[0.20]	2716	1462 (2)	1732 (1)	1732(1)	1867(1)	872	1004
Average	2662	232	1092	873	1641	332	371

Clase 2. Registros extracelulares y Spike sorting.

A detailed and fast model of extracellular recordings Luis Camunas-Mesa and Rodrigo Quian Quiroga. Neural Computation, 25: 1191–1212, 2013

Unsupervised spike sorting with wavelets and superparamagnetic clustering. Quian Quiroga R, Nadasdy Z and Ben-Shaul Y. Neural Computation, 16: 1661-1687; 2004.

<u>Spike Sorting</u>. Quian Quiroga R. Scholarpedia 2 (12): 3583. 2007.

Quick guide: spike sorting Quian Quiroga, R. Current Biology 22. R45–R46, 2012.

Past, present and future of spike sorting techniques Hernan Gonzalo Rey, Carlos Pedreira and Rodrigo Quian Quiroga. Brain Research Bulletin, 119: 106-117, 2015.

